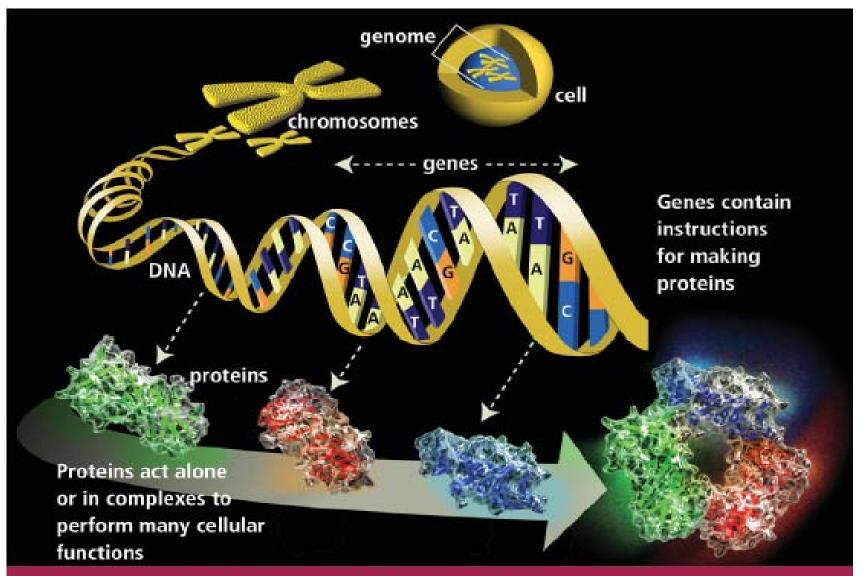
Imaging and Image Analysis of Tissue Microarrays

Kristen L. Lecksell

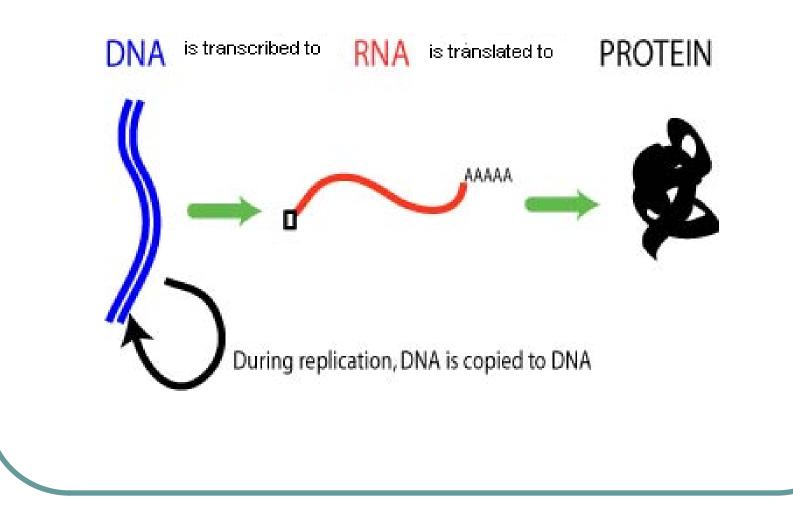
Department of Pathology, The Johns Hopkins University School of Medicine NSH: 35th Annual Symposium Convention Birmingham, AL


October 6, 2008

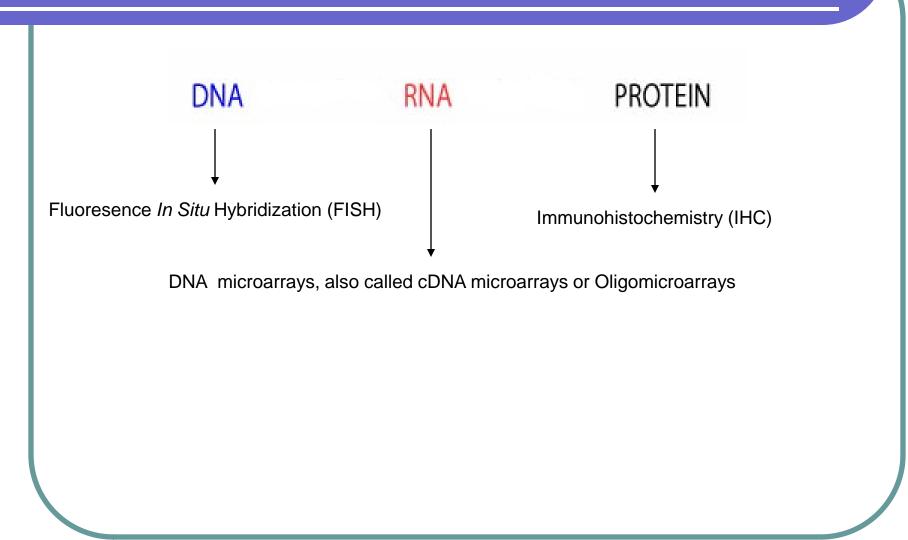
Topics

- Background Information
- Imaging Tissue Microarrays Reasons
- TMA Imaging Systems
- Image Capture
- Quantitative Image Analysis
- Other Uses of Scanning

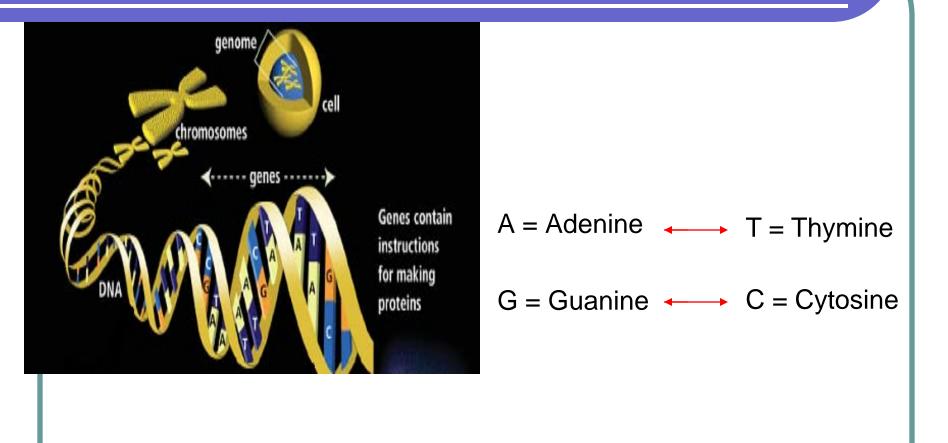
Human Genome Project


Sequencing of the human genome has yielded an estimate of 20,000–25,000 protein-coding genes

From Genes to Proteins

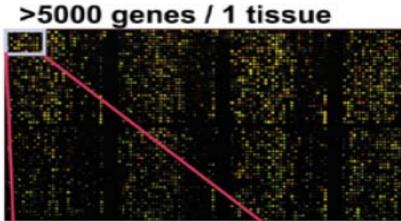

http://www.ornl.gov/sci/techresources/Human_Genome/publicat/primer2001/PrimerColor.pdf

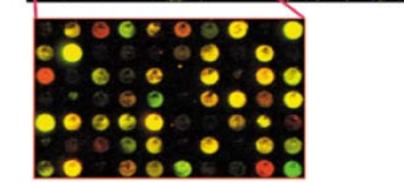
Central Dogma of Genetics

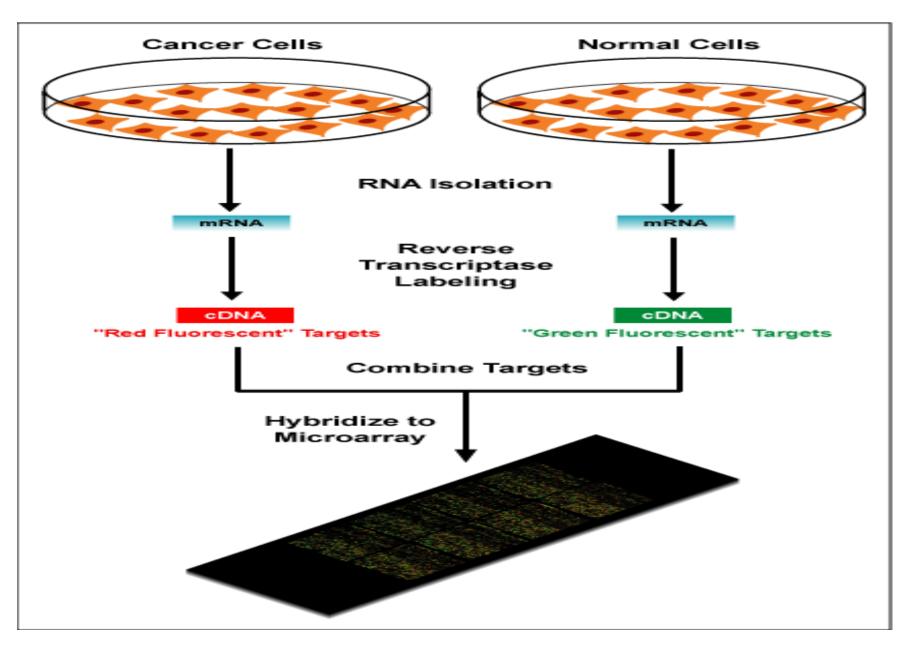


http://cnx.org/content/m11415/latest/

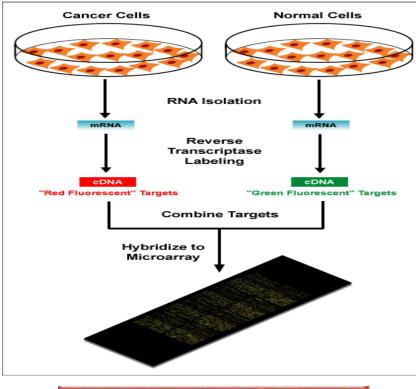
Detection Techniques




Complementary Base Pairing

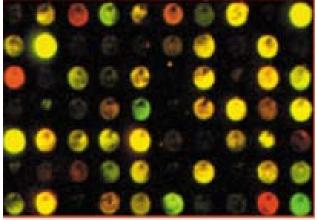

http://www.ornl.gov/sci/techresources/Human_Genome/publicat/primer2001/PrimerColor.pdf

DNA Microarray



Tissue microarray technology for high-throughput molecular profiling of cancer Kallioniemi O et.al. Human Molecular Genetics, 2001, vol. 10, No. 7

http://en.wikipedia.org/wiki/DNA_microarray


Gene expression

Red Spot

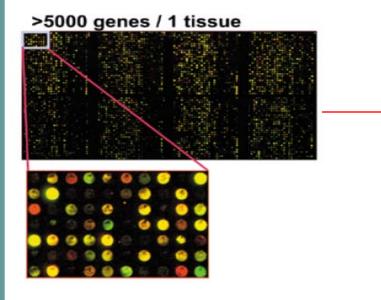
Green Spot

= Cancer = Normal

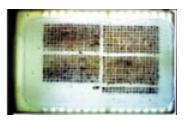
In-Between Spot = Both

http://en.wikipedia.org/wiki/DNA_microarray

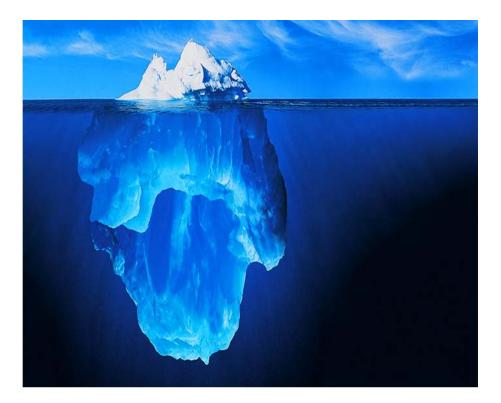
High Throughput Techniques


 High throughput techniques such as DNA microarrays, serial analysis of gene expression (SAGE) and proteomic surveys have produced many new potential diagnostic, prognostic and therapeutic targets that may lead to clinically useful applications

Tissue microarray technology for high-throughput molecular profiling of tumor specimens Kononen J et.al. Nature Medicine, 1998, vol. 4, no. 7, pp. 844-847


Disadvantages of Techniques

- Histology is not preserved (sample ground up)
- Genes may be expressed in multiple different cell types
- Validation requires many samples


First Gene Discovery, Then Validation

HER2, ER & PR

http://www.ralphclevenger.com/

Other Targets

Angiogenesis Inhibitors	Target	Phase of Testing	Cancer Type
Avastin (bevacizumab)	VEGF	Filed for approval	Kidney
Cilengitide	Integrins	III	Brain
Pazopanib	VEGFR and PDGF	III	Kidney, Inflammatory Breast
http://www.curetoday.com/index.	cfm/fuseaction/article	e.show/id/2/article_i	d/1133

Other Targets

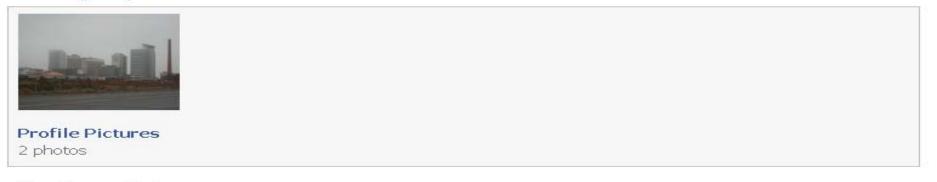
HER Family Inhibitors	Target	Phase of Testing	Cancer Type
Erbitux (cetuximab)	EGFR (HER 1)	III	Lung, Pancreatic
Trastuzumab-DM1	HER2	II	Breast
Vectibix (panitumumab)	EGFR (HER1)	111	Head and Neck
http://www.curetoday.com/index	.cfm/fuseaction/article	e.show/id/2/article_i	d/1133

Histotechnologists Needed

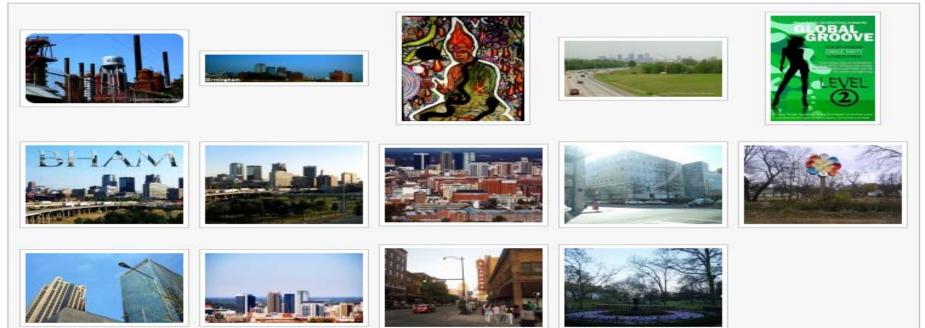
- To make TMAs
- To do IHC on TMAs
- To image slides
- To run image analysis

Why TMA Technology Was Created

 "...analysis of hundreds of specimens from patients in different stages of disease is needed to establish the diagnostic, prognostic and therapeutic importance of each of the emerging cancer gene candidates."

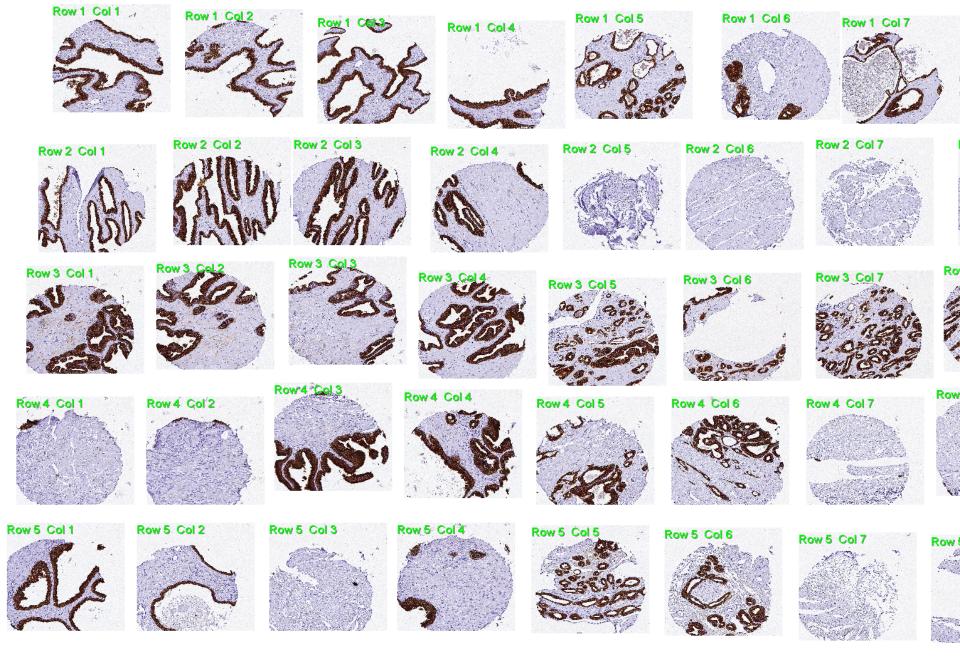

Tissue microarray technology for high-throughput molecular profiling of tumor specimens Kononen J et.al. Nature Medicine, 1998, vol. 4, No. 7

Imaging Tissue Microarray Reason #1


 Permanent electronic record which can be stored on a server and accessed from any computer with internet access

Birmingham, AL's Albums

Fan Photos 14 photos View Comments


U:\TMA_0648_CUT_020_SCAN	_01_HEAPERIO_										l
File Edit View Favorites Tools											
	arch 😥 Folders 👖	•									
Address 🗀 U:\TMA_0648_CUT_020_SCA	N_01_HEAPERIO_	100 C.				AT 1893			- Alterna	14	~
Picture Tasks Image: Constraint of the state show Image: Constraint of the state show Image: Constraint of the state show Image: Constraint of the state show Image: Constraint of the state show Image: Constraint of the state show Image: Constraint of the state show Image: Constraint of the state show Image: Constraint of the state show	0648_A_5_8.jpg	0648_A_5_9.jpg	0648_A_5_10.jpg	0648_A_5_11.jpg	0648_A_5_12.jpg	0648_A_5_13.jpg	0648_A_5_14.jpg	0648_A_5_15.jpg	0648_A_6_1.jpg	0648_A_6_2.jpg	
File and Folder Tasks Image: Constraint of the state Image: Make a new folder Image: Constraint of the state Image: Publish this folder to the Web Image: Constraint of the state	0648_A_6_3.jpg	0648_A_6_4.jpg	0648_A_6_5.jpg	0648_A_6_6.jpg	0648_A_6_7.jpg	0648_A_6_8.jpg	0648_A_6_9.jpg	0648_A_6_10.jpg	0648_A_6_11.jpg	0648_A_6_12.jpg	
Other Places Image: _directory on 'bul2' (Ut)' Imag	0648_A_6_13.jpg	0648_A_6_14.jpg	0648_A_6_15.jpg	0648_A_7_1.jpg	0648_A_7_2.jpg	0648_A_7_3.jpg	0648_A_7_4.jpg	0648_A_7_5.jpg	0648_A_7_6.jpg	0648_A_7_7.jpg	
Details 📚	0648_A_7_8.jpg	0648_A_7_9.jpg	0648_A_7_10.jpg	0648_A_7_11.jpg	0648_A_7_12.jpg	0648_A_7_13.jpg	0648_A_7_14.jpg	0648_A_7_15.jpg	0648_A_8_1.jpg	0648_A_8_2.jpg	
	0648_A_8_3.jpg	0648_A_8_4.jpg	0648_A_8_5.jpg	0648_A_8_6.jpg	0648_A_8_7.jpg	0648_A_8_8.jpg	0648_A_8_9.jpg	0648_A_8_10.jpg	0648_A_8_11.jpg	0648_A_8_12.jpg	
	0648_A_8_13.jpg	0648_A_8_14.jpg	0648_A_8_15.jpg	0648_A_9_1.jpg	0648_A_9_2.jpg	0648_A_9_3.jpg	0648_A_9_4.jpg	0648_A_9_5.jpg	0648_A_9_6.jpg	0648_A_9_7.jpg	
			E.								

Imaging Tissue Microarray Reason #2

Keep track of the x, y spot coordinates, making spot review and data entry MUCH easier

1 3.0 800 9 0 911 200 4 43 0 20 Call Le 50 10 0 00 463 1 6 6 6 1 (N) (N) 11 80 G 💨 🌮 5.0 6 🌰 🦰 🕧 🍈 😤 i 🔊 🚳 🚳 🆓 🌰 15 1400 die 332 CAR Ger of City . 12 GB 010 n 🔿 🗞 😪 🌙 👟 🖉 👜 s 1 9 3 7 C C 0 0.0

Tissue Microarray – 400 cores, 0.6 mm each – H&E of 4 µm section

Tissue Microarray – 400 cores, 0.6 mm each – CK8 of 4 μ m section

Imaging Tissue Microarray Reason #3

 To collaborate efforts between pathologists via telepathology

https://secondslide.com/

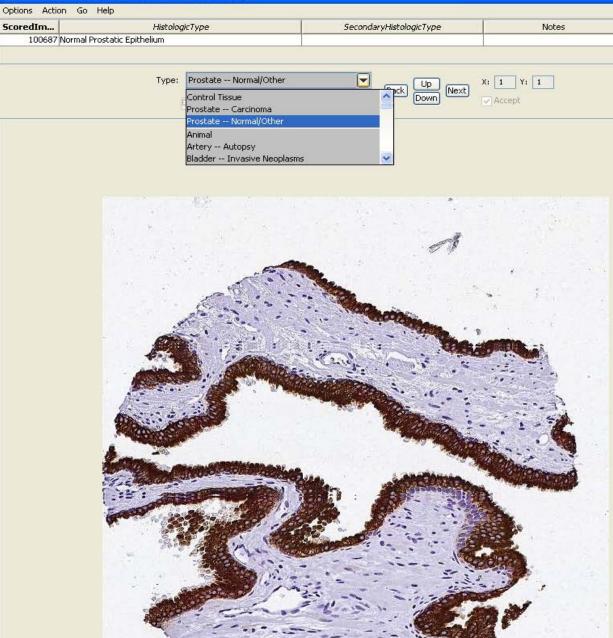
Imaging Tissue Microarray Reason #4

 Can import images into a database linked to image, pathology, and clinical information.

Publicly Available TMA Databases

Institution	Name of Database	Webpage
Stanford University, California, USA	TMAD	http://tma.stanford.edu/cgi- bin/home.pl
Johns Hopkins University, Maryland, USA	TMAJ	http://tmaj.pathology.jhmi.ed u/
Graz University of Technology, Austria	TAMEE	https://esus.genome.tugraz. at/tma/
MD Anderson Cancer Center, Texas, USA	TAD	http://bioinformatics.mdand erson.org/tad.html

Johns Hopkins Online TMA Database


🐓 TMAJ	
	The TMAJ Software Project
	Johns Hopkins TMA Lab Version 2.27.0
'elcome, Kristen !	
Lo	ogin Logout Reset About Exit
ArrayBuilder	Design a Tissue MicroArray
Array Manager	Input Data about ArrayBlocks, ArraySlides, and Scans
Images Manager	View and Diagnose Images from a Tissue MicroArray slide
Import	Import Scanned Images or Specimens
Meta Data	View and Add Custom Fields to TMAJ
Specimens Manager	Input Data about Specimens, Donor-Blocks, or TissueDiagnoses
Options	Change Password, other miscellaneous tasks
Administrator	Perform Administrative Tasks for TMAJ
	TMAJ Software Tools for Tissue MicroArrays Copyright (C) 2007 The Johns Hopkins University All Rights Reserved.

Dennis Faith Brian Razzaque James D. Morgan Helen Fedor Angelo M. De Marzo

http://tmaj.pathology.jhmi.edu/

🔳 s	es	sio	nID	#11	092	2 (1	MA	#1		Cut	#3	1, 1	Stai	in-(:K8	1		-			×	
View	6 1	Fool	s I	Help	es -																	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20		
1	X	1																			~	
2	_		_			_				_												
3	-	-		_	-					-	_	-	-	-			-		-	_		
2345		-			-	-		-	-	-	-	-	-		_	-						L
6	-																					L
1																						L
8																						L
																					1	L
10		_	_			_			_	_		_				_	_			_		
11	-	-		_	-	-		_	-		_	1	-			-	-		-	-		
12	-	-	-			-	-	-		-	_		-		_	-	-	_	-	-		
14	-		_	_			-	-		-			-	-	_			_				
15		1			-	1		-	1			-							1			
16																						
1/	1	-										1							1.			
18															_						-	
19	-										_	-				-					×	

SessionID#1092 (TMA#18, Cut#31, Stain-CK8)

http://tmaj.pathology.jhmi.edu/

🔟 Edit Session: Sess	sionID#2161: Kristen Lecksell's scores for (TMA#17, Cu	t#72, St 🔀
SessionID:	# 2161	Options
User:	Lecksell, Kristen	Share
Scan:	ScanID#39 (ScanNumber-1 ArraySlideID#1392)	
Project:	Kristen's Practice Image Analysis project	Copy
Creation Date:	2009-08-26 00:00:00	Finalize
Status:	Incomplete / Not-Shared / Writable	
Description:	#B	
Notes:		
Scoring Strategy:	✓	
Image Analysis Session:	Percent Negative/Weak/Mod/Strong Percent Positive Percent Positive/Strong	
	Spectrum Immuno Percent TissueType PTEN Staining	

4 0	<mark>irrayBlockID</mark>	#18 18 20)0 Prostate (Cases Block 2	(De Marzo)				
File	View Help									
	1	2	3	4	5	6	7	8	9	10
1	210	210	210	210	164	164	164	164	liver	69
2	212	212	212	212	213	213	213	213	liver	35
3	1040	1040	1040	1040	1041	1041	1041	1041	liver	857
4	858	858	858	858	860	860	860	860	liver	48
5	19438	19438	19438	19438	11	11	11	11	liver	1086
6	1013	1013	1013	1013	1010	1010	1010	1010	liver	1091
7	1109	1109	1109	1109	1111	1111	1111	1111	liver	1031
8	900	900	900	900	1022	1022	1022	1022	brain	943
9	934	934	934	934	876	876	876	876	brain	447
10	481	481	481	481	479	479	479	479	brain	465
11	419	419	419	419	420	420	420	420	kid	433
12	85	85	85	85	84	84	84	84	kid	179
13	188	188	188	188	182	182	182	182	kid	194
14	175	175	175	175	176	176	176	176	kid	171
15	131	131	131	131	115	115	115	115	kid	416
16	492	492	492	492	491	491	491	491	tonsil	446
17	533	533	533	533	534	534	534	534	tonsil	516
18	696	696	696	696	698	698	698	698	tonsil	707
19	776	776	776	776	777	777	777	777	tonsil	790
20	756	756	756	756	757	757	757	757	tonsil	440

<

 Tissue Diagnosis

 TissueDiagnosisID:
 210

 Lesion Letter:
 T_210

 Outside TD Number:
 189

 Tissue Type:
 Prostate --- Normal/Othe


Block	
BlockID:	1343
Block:	LCP
Part:	3
OutsideBlockNum:	

Specimen		
SpecimenID:	1522	
Surg Path Number:		Details
Hospital:	JHH	
Specimen Type:	Radical Prostatector	

>

Data in TMAJ Specimens Table

- Patient Data
 - PatientID
 - Age
 - Race
- Surgical Pathology Data
 - SurgPathNumber
 - DateSpecimenTaken
 - PStage
 - HistologicalType (Gleason for radical prostatectomies)
 - MarginsPositive
- Clinical Data
 - PreOpPSA (for radical prostatectomies)

Image Application: Filtering

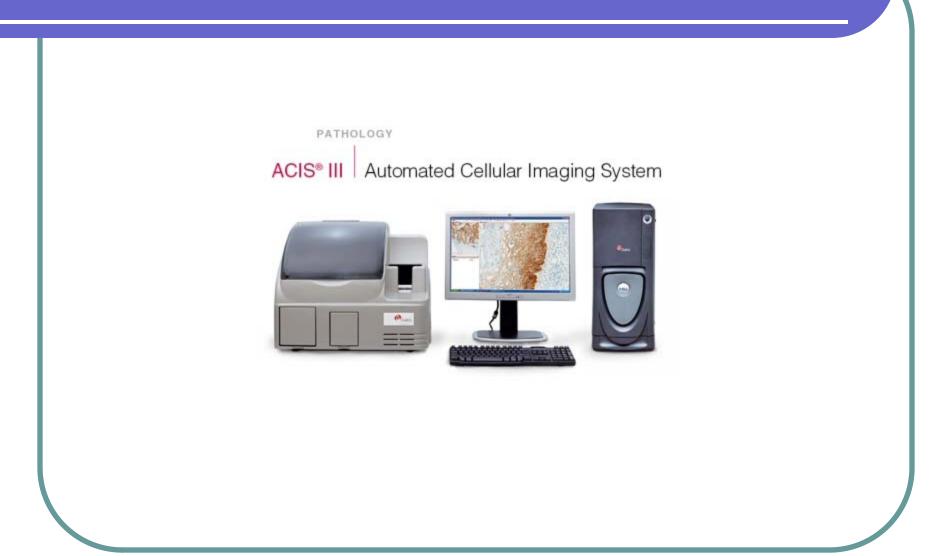
				-	-	1000		Contractor II		-	-			14.75	_	_		_						int.
			Remove Ap	0	1	2	3	4	41) 005 5	8	7	8	0	10	11	12	13	14	15	16	17	18	19	20
Х	Y	Control	Primary_Histologic_T	1	-	3	8	(CP)	-			>	-	400 ×	1814			40	10	2	۹	3	-	
3	17	tonsil	Not Specified	2	13	11月 11月	*	(B)	爵	100	瘤	10	0	10	150- 161	\$.69	愚姿	推动	0	80 60	154	4	1
0	17	lonon	Normal Prostatic Epithelium	4	10	Par By	14		3	199	0	AD.	18 60	10	10	٢	69.	14	10F 校	197	67		1.1	1
1	17		Normal Prostatic Epithelium	5	ur,	13	04	-	6	0	100	69	0	12	100	10	6	6	8	-205	10	1	1	
2	17		Normal Prostatic Epithelium	.6	0	3	æ	-63	.3	- 28	3	63.	3	10	0	9	3	6	-03	69	29		1	F
3	17		Normal Prostatic Epithelium	7	10	1	6)	63	650	10	18	3	0	13	\$	3	前	0	_{容×}	ø	-	it.	64	1
4	17		Prostatic Adenocarcinoma, GI	8	14	1		-	3	\$	٢	0	-	:05	Ş.,	10	13	1	ø	(2)	٢	Sec.	Ser.	
5	17		Normal Prostatic Epithelium	9	a.	-	6	Ø	0	-	۲	۲	0	Đ.	爱	62.	ŵ		195	-	Ð.	i.	2	Г
6	17		Normal Prostatic Epithelium	10	母	15	3	\$	弊	٠	GĮ.	-	13	۰.		5.		48	鼎	额		14		
7	17		Normal Prostatic Epithelium	11	斁	1	0	12	1	8	1	0	Ø.	10	Gr.	10	18	1	-80	4	1	1	10	
8	17	vas	Not Specified	12	61	50	赖	谭	1	10	9	\$	0	念.	(3	٩.	.#	18	Ð	*	撒	20	76	
9	17	vas	Normal Prostatic Stroma	13	\$	€.	豪	19	9	部	優	i Presidente de la compactación	-63	43	Q.	۲	3	17	影	1	樹×	÷.	14	
20	17	brain	Not Specified	14	73	4	5	0	-	-	0	12	1	19	12,	59	-89	称	-	邸	0	۲	肠	0
I.	18		Normal Prostatic Epithelium	15	47	i.	119.	:0	-	Q.	_		÷.	0	6	0	٢	豪	100	通	5	44	- 22	1.7
2	18		Normal Prostatic Epithelium	16	\$	129	帮	÷	82	3	182	12	8	¢.	12	4	0	0	6	· @2	1	0	3	
3	18		Normal Prostatic Epithelium	17	藥	-	19.	碧	-	36	-Q.	-	-	瘛	1	49	8	10	2	福	8	1 they	\widetilde{Y}^{\pm}	Ľ
I.	18		Normal Prostatic Epithelium	18	-81		1	3	10	8	6	8	\$	1	儆	Ø	-W	9	sp.	47	8	- 69	- 10	
99 r	ecor	ds		19	2	100	14	54	1	\$	1	109.	۲	57	-	1,4	2.	12	-8	虚	18	24	- 64	-
100		27.		20	-17	栗	働	3	142	4	动	2	欧	1	.@.		. 65	1	6	- 65	.10	12	0	.4

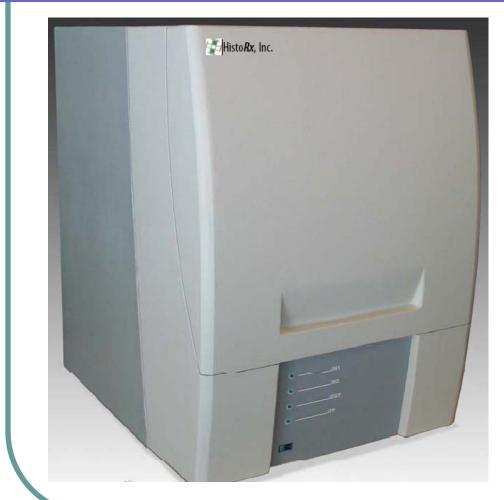
Scanners

Aperio Technologies	ScanScope™ XT, GL, CS, OS & FL	http://www.aperio.com
Olympus and its wholly owned subsidiary Bacus Laboratories Inc. (BLI)	BLISS™ and Nanozoomer™ RS & HT	http://www.olympusamerica.co m/
Dako – think it's now Zeiss, but Dako web link still works	ACIS III™	http://www.dako.com/go/acis.ht m
HistoRx	PM-2000™ (fluorescence only)	http://www.historx.com/

Aperio Scanners

Olympus/Bacus Scanners


Nanozoomer RS



Nanozoomer HT

Dako/Zeiss Scanner

HistoRx Scanner

PM-2000[™] (fluorescence only) by HistoRx

Hardware of Most Scanning Systems

- Brightfield microscope, objectives (Plan Apochromat: 1.25x, 5x, 10x, 20x, 40x, 60x & 100x) and motorized stage
- Color video camera such as a 3 CCD (charge-coupled device)
- High resolution monitor
- Slide loader

CPU

Software of Most Scanning Systems

- Proprietary
- Composite
- Controls the hardware
 - Stage it's movement
 - Objectives
 - Video camera
- Image analysis
 - Morphometric measurements
 - IHC quantification
 - Histology pattern recognition

Three Ways to Capture a Virtual Slide

- "Taking static images of a glass slide using a conventional light microscope and then collating them together;"
- "Remotely operating a microscope that is capable of dynamically changing its field of view and capturing an image at a userdefined resolution;"
- "High-resolution scanning of the whole glass slide."

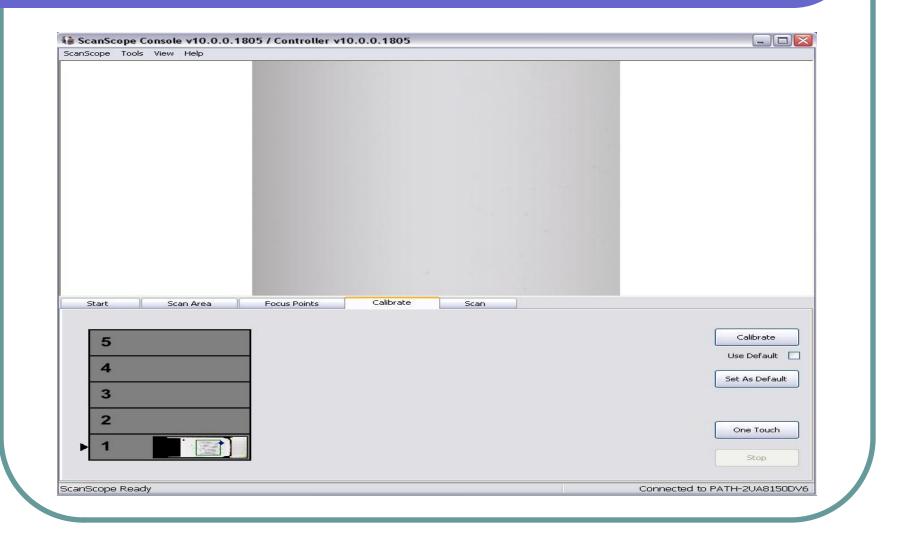
Image Capture

- Digitizing the tissue or cells on a glass microscope slide, so that the personal computer becomes the microscope
- Can view under different magnifications
- Can represent whole tissues or TMAs
- Working with pixels instead of a paper image

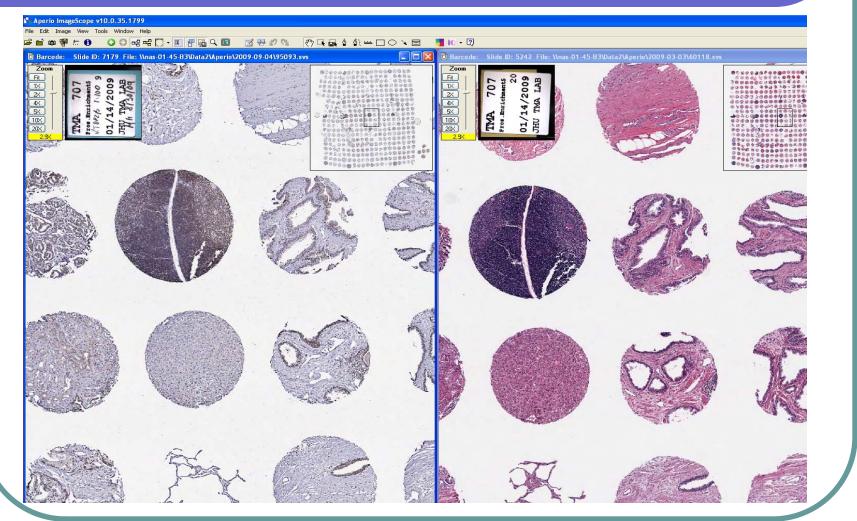
20x Camera Capture

	Pixel # / Micron
Aperio: ScanScope CS	2
Dako/Zeiss: ACIS II	2
Olympus/Bacus Labs: BLISS	2.37

Megabytes, Gigabytes & Terabytes


- Digitized TMA: 100 MB to 3 GB
- Storage is an issue
- BUT storage is getting cheaper

mage Properties	Motion Properties	ScanScope Propertie	s Area Of Interest	
Properties -				
Name:				
Velocity		Get		
Value:				
		Updat		
4.572156		Opuac	B	
Second Second	Darmoet		•	
0verwrite	Parmset		2	
Sugar course		- opuar	8	
Overwrite			2	
Overwrite Parameter Se TMA COVERSLIP			2	
Parameter Se TMA COVERSLIP EPISKIN		~	8	
Overwrite Parameter Se TMA COVERSLIP EPISKIN FAINT TMA minus p	oints low	<u> </u>	3	
Overwrite Parameter Se TMA COVERSLIP EPISKIN FAINT TMA minus p TMA minus p	oints low	~	2	
Overwrite Parameter Se TMA COVERSLIP EPISKIN FAINT TMA minus p	it: oints low oints	~	2	


A REALESS STRUCTURE S		
Zoom		
Macro AOI		
Scan Area		
	+	
	0	
	200000100100.000000000 20000000000000000	
	#0000#50000000000000000000000000000000	
Start Scan Area	Focus Points Calibrate Scan	
Start Scan Area	Focus Points Calibrate Scan	
	Scan Area	Find Tissue
Start Scan Area	Scan Area Left: Top: Width: Height:	Find Tissue
	Scan Area Left: Top: Width: Height:	Find Tissue
5	Scan Area Left: Top: Width: Height:	Find Tissue
5	Scan Area Left: Top: Width: Height:	Find Tissue
5 4 3	Scan Area Height: Left: Top: Width: Height: 38.369 5.179 21.760 20.274	Find Tissue
5	Scan Area Left: Top: Width: Height: 38.369 5.179 21.760 20.274 Scan settings Scan Magnification: Use Narrow Stripes 20 V V	Find Tissue
5 4 3 2	Scan Area Left: Top: Width: Height: 38.369 5.179 21.760 20.274 Scan settings Scan Magnification: Use Narrow Stripes 20 Pre-Focus	
5 4 3	Scan Area Left: Top: Width: Height: 38.369 5.179 21.760 20.274 Scan settings Scan Magnification: Use Narrow Stripes 20 V V	
5 4 3 2	Scan Area Left: Top: Width: Height: 38.369 5.179 21.760 20.274 Scan settings Scan Magnification: Use Narrow Stripes 20 Pre-Focus	One Touch

Viewing an Image: Aperio

Tissue Microarray – 400 cores, 1.5 mm each – stained with TOP2B on the left and H&E on the right - 4 μ m section each

Spectrum[™]

User: Lecksell, Kristen, Role: _SysAdmin

Edit TMA Map

TMA Composites

Pathologist-based Analysis

- Standard on IHC studies
- Semi-quantitative
- Qualitative
- Inter-observer variation
- Intra-observer variation
- Difficult to reproduce

Pathologist-based analysis of HER2 on HerceptTest

Score	Criteria
Weakly Positive: 2+	Weak to moderate complete membrane staining in >10% of tumor cells
Strongly Positive: 3+	Strong complete membrane staining in >10% of tumor cells

Quantitative Image Analysis

"It is the extraction of meaningful information from images; mainly from digital images by means of digital image processing techniques. Image analysis tasks can be as simple as reading bar coded tags or as sophisticated as identifying a person from their face."

Quantitative Image Analysis

"With automated image analysis, complex computer algorithms are used to enhance the slide image, making interpretation straight-forward and facilitating a more objective interpretation."

Algorithm

"An algorithm is a computer-based specific set of instructions for carrying out a task or solving a problem."

Typical Quantitative Image Analysis

- Separating stains (color deconvolution)
- Quantifying a particular stain (measuring pixel color intensities)
- Identifying a region of pathological interest (cancer vs. normal)

Color Deconvolution

Analytical and Quantitative Cytology and Histology®

Color Deconvolution for the Analysis of Tissue Microarrays

Toby C. Cornish, M.D., Ph.D., and Marc K. Halushka, M.D., Ph.D.

OBJECTIVE: To analyze tissue microarrays (TMAs) using color deconvolution, a method for separating component dyes in digital images, and compare the results to observer scoring.

STUDY DESIGN: TMAs were constructed from tissues from 100 adult autopsies and immunohistochemically stained for connective tissue growth factor. A region of interest (ROI) was created for each core image using 3 binary masks—tissue area, inclusion area, and exclusion area. The diaminobenzidine (DAB) and hematoxylin sigistry, staining, tissue microarray.

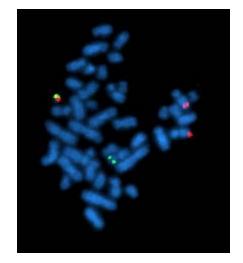
Immunohistochemistry (IHC) is a powerful method for evaluating protein expression in tissues. The advent of high temperature antigen retrieval methods in the 1990s improved the repeatability and quality of IHC, and it is now routinely used for both clinical and research applications.¹ A significant advantage of IHC over techniques such as Western blotting and enzyme-linked immunosorbent assay

Cornish TC, Halushka MK. Color Deconvolution for the Analysis of Tissue Microarrays. Anal and Quant Cytology and Histology. 2009 31(0) ahead of print.

Color Deconvolution for TMA Images Website

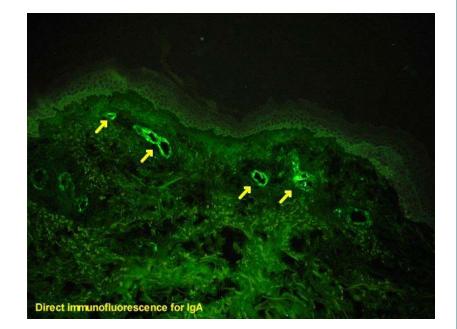
http://colordecontmas.sourceforge.net/

Typical Quantitative Image Analysis


- Determine where the edges of an object begin and end
- Count similar objects
- Calculate the area, perimeter & length of objects such as:
 - Nuclei
 - Microvessels
 - Lymphoid cells

ImmunoHistoChemistry

- Method of protein detection and localization
- Can use frozen or formalin-fixed paraffinembedded tissue


Fluorescence In Situ Hybridization

- Cytogenetic technique
- Detects and localizes the presence or absence of specific DNA sequences on chromosomes

Immunofluorescence

- The labeling of antibodies or antigens with fluorescent dyes
- Used to visualize subcellular distribution of biomolecules

Users of Quantitative Image Analysis

- Oncology
- Pathology
- Toxicology within the pharmaceutical industry

Why Use It

"The continuous staining intensity values provided by the quantitative image analysis allows for better discrimination of subtle protein expression differences, which may not be apparent in the pathologist categorical evaluation."

> Alpha-Methylacyl-CoA Racemase Protein Expression Is Associated with the Degree of Differentiation In Breast Cancer Using Quantitative Image Analysis Witkiewics AK et. al. Caner Epi Biomarkers Prev, 2005, vol. 14, no.6

Commercially Available Software Packages for Quantitative Image Analysis

Software Package

Company

ScanScope Systems®

Aperio Technologies, Inc., CA, USA

BLISS[™] workstation with TMAscore

Automated Quantitative Analysis (AQUA®)

HistoQuant

Bacus Laboratories, Inc., IL, USA

HistoRX, CT, USA

3DHistech, Budapest, Hungary

Quantitative Image Analysis Article

Review

For reprint orders, please contact reprints@expert-reviews.com

Automated image analysis in histopathology: a valuable tool in medical diagnostics

Expert Rev. Mol. Diagn. 8(6), 707–725 (2008)

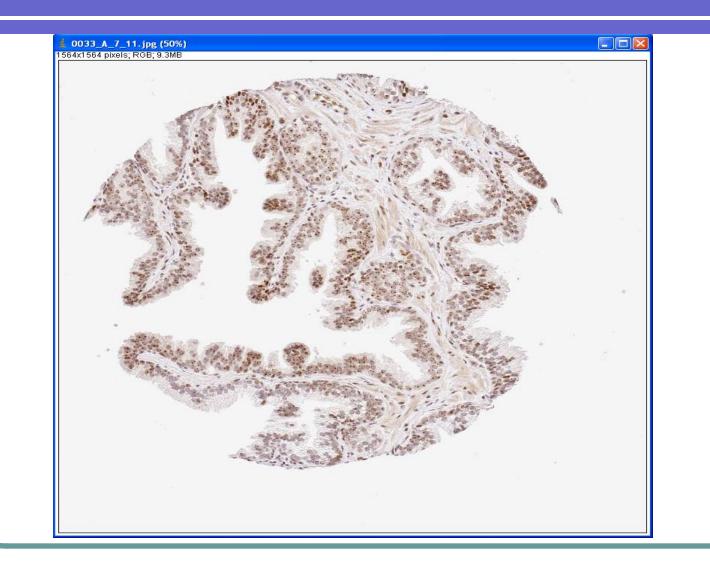
Laoighse Mulrane, Elton Rexhepaj, Steve Penney, John J Callanan and William M Gallagher[†]

[†]Author for correspondence UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland Tel.: +353 1716 6743 Fax: +353 1283 7211 Virtual pathology, the process of assessing digital images of histological slides, is gaining momentum in today's laboratory environment. Indeed, digital image acquisition systems are becoming commonplace, and associated image analysis solutions are viewed by most as the next critical step in automated histological analysis. Here, we document the advances in the technology, with reference to past and current techniques in histological assessment. In addition, the demand for these technologies is analyzed with major players profiled. As there are several image analysis software programs focusing on the quantification of immunohistochemical staining, particular attention is paid to this application in this review. Oncology has been a primary target area for these approaches, with example studies in this therapeutic area being covered here. Toxicology-based image analysis solutions are also profiled as these are steadily increasing in popularity, especially within the pharmaceutical industry. Reinforced by the phenomenal growth of the virtual pathology field, it is envisioned that the market for automated image analysis tools will greatly expand over the next 10 years.

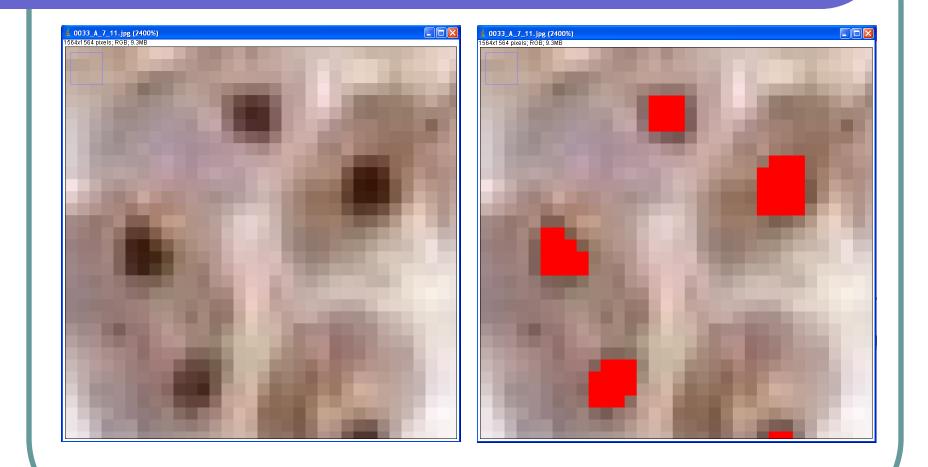
FrIDA: An open source framework for image dataset analysis

- FrIDA is image analysis software.
- Developed by the Johns Hopkins University Tissue Microarray Core Facility.
- Open source and written in 100% Java.
- Makes use of functionality from the NIH's <u>ImageJ</u> application.

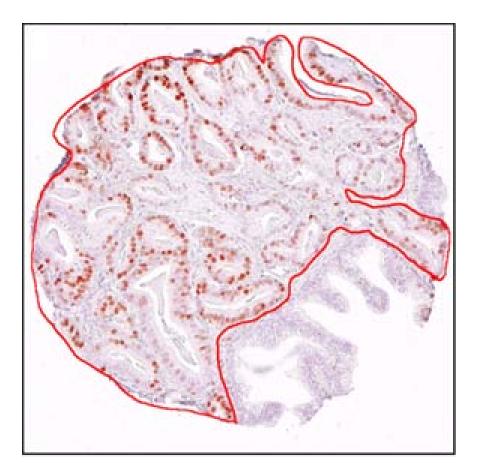
http://bui2.win.ad.jhu.edu/frida/

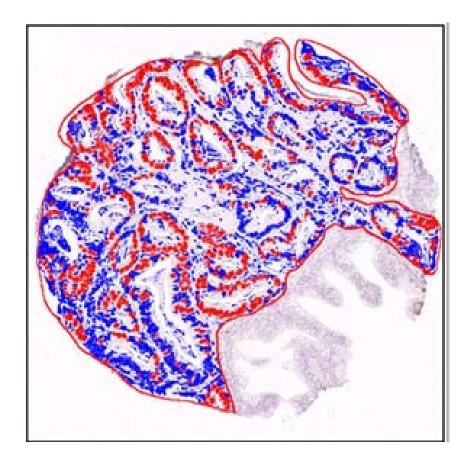

Image information on the pixels is quantified

- Hue (Color) stain color
- Saturation (Color Purity) amount of stain
- Luminosity (Intensity) specimen density
- Good description is found at http://en.wikipedia.org/wiki/HSL_and_HSV


Setting Up a Quantitative Image Analysis

- Create a color mask
- Create a lasso mask
- Create a meta-mask


Creating a Color Mask


Creating a Color Mask

Creating a Lasso Mask

Creating a Meta-Mask Using Boolean Logic

Quantitative Image Analysis Data: Intensity Values

0 = no stain >0<255 = some stain 255 = maximum stain

Quantitative Image Analysis Data: FrIDA

- Blue Intensity Mean
- Brown Intensity Mean
- Blue Total Area
- Brown Total Area
- Brown and Tumor Intensity Mean
- Lasso + Blue or brown Intensity Mean

Publishing TMA Images and Scoring Data Over the Internet

- Roughly modeled after Stanford Microarray Database
- Concept:
 - Once a study is published by a journal, all TMA diagnoses, image, scoring and non-protected clinical data can be "published" as supplemental data to the Internet for public online viewing or down loading

 In addition, some TMAJ Images are now linked to "Proteinpedia" database

(<u>http://humanproteinpedia.org</u>) by Akhilesh Pandy, MD PhD.

Published TMAJ Images

http://tmaj.pathology.jhmi.edu

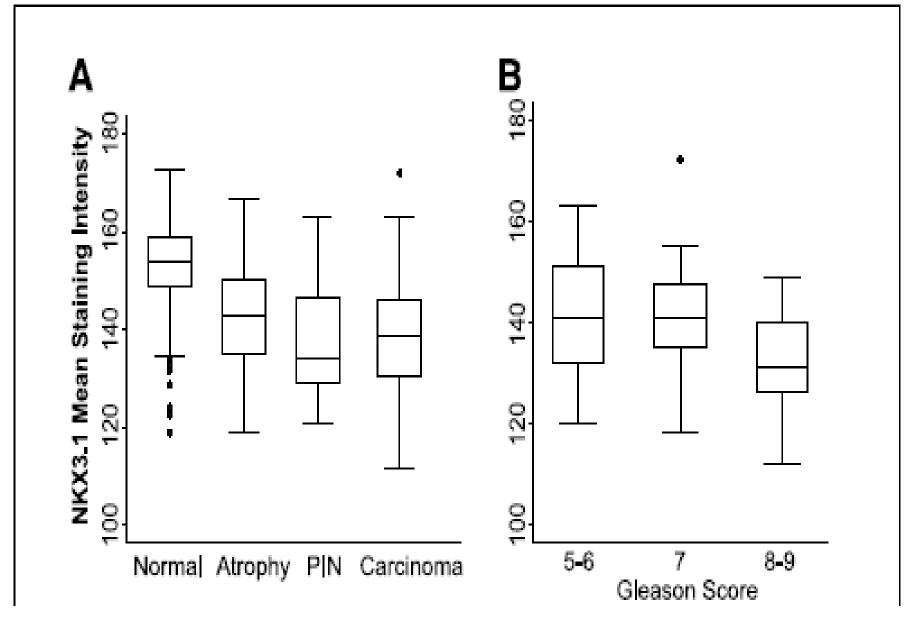
- To see published images
 - login to tmaj as a guest and then click the Images button.
 - Username: guest
 - Password: guest

Publications

Research Article

Decreased NKX3.1 Protein Expression in Focal Prostatic Atrophy, Prostatic Intraepithelial Neoplasia, and Adenocarcinoma: Association with Gleason Score and Chromosome 8p Deletion

Carlise R. Bethel,¹ Dennis Faith,⁴ Xiang Li,² Bin Guan,² Jessica L. Hicks,³ Fusheng Lan,⁵ Robert B. Jenkins,⁵ Charles J. Bieberich,² and Angelo M. De Marzo³


¹Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health; ³Department of Biological Sciences, University of Maryland Baltimore County; ³Departments of Pathology and Urology, ³The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, ³The Johns Hopkins University School of Medicine, Baltimore, Maryland; ⁴The University of Minnesota School of Medicine, Minneapolis, Minnesota; and ⁴The Mayo Clinic, Rochester, Minnesota

Abstract

NKX3.1 is a homeobox gene located at chromosome 8p21.2, and one copy is frequently deleted in prostate carcinoma. Prior studies of NKX3.1 mRNA and protein in human prostate cancer and prostatic intraepithelial neoplasia (PIN) have been conflicting, and expression in focal prostate atrophy lesions has not been investigated. Immunohistochemical staining for NKX3.1 on human tissue microarrays was decreased in most focal atrophy and PIN lesions. In carcinoma, staining was inversely correlated with Gleason grade. Fluorescence in situ hybridization showed that no cases of atrophy had loss or gain of 8p, 8 centromere, or 8q24 (C-MYC) and only 12% of highgrade PIN lesions harbored loss of 8p. By contrast, NKX3.1 staining in carcinoma was correlated with 8p loss and allelic loss was inversely related to Gleason pattern. Quantitative reverse transcription-PCR for NKX3.1 mRNA using microdissected atrophy revealed a concordance with protein in five

in approximately 50% to 85% of cases (2, 3). Given that mutations in the remaining allele of *NKX3.1* have not been detected (4, 5), *NKX3.1* may function as a haploinsufficient tumor suppressor gene. That loss of one allele of *NKX3.1* occurs early in prostate carcinogenesis is evidenced by the finding that LOH on chromosome 8p has been reported to occur in high-grade prostatic intraepithelial neoplasia (PIN), a lesion that is a putative precursor to many invasive prostatic carcinomas (6), at a frequency between 20% and 80% (7–9).

Targeted disruption of *Nkx3.1* in mice results in abnormal prostate ductal morphogenesis and protein secretion (10–12). Although *Nkx3.1* homozygous mutant mice do not develop invasive carcinoma, epithelial hyperplasia and PIN lesions arise with age. Compound mutant mouse studies indicate that cooperativity exists between *Nkx3.1* and the tumor suppressors *Pten* and *Cdkn1b* (encoding p27; refs. 13–17). These compound mutants develop PIN lesions that progress to invasive carcinomas and at times to metastatic disease. Because the effects are seen in *NKX3.1*

Decreased NKX3.1 Protein Expression in Focal Prostatic Atrophy, Prostatice Intraepithelial Neoplasia, and Adenocarcinoma: Association with Gleason Score and Chromosome 8p Deletion: Cancer Res 2006, vol. 66, no. 22

Trefoil Factor 3 Overexpression in Prostatic Carcinoma: Prognostic Importance UsingTissue Microarrays

Dennis A. Faith,¹ William B. Isaacs,^{1,3} James D. Morgan,² Helen L. Fedor,² Jessica L. Hicks,² Leslie A. Mangold,¹ Patrick C. Walsh,¹ Alan W. Partin,¹ Elizabeth A. Platz,⁴ Jun Luo,¹** and Angelo M. De Marzo^{1,2,3}*

¹Brady Urological Institute, The Johns Hopkins University, School of Medicine, Baltimore, Maryland ²Department of Pathology, The Johns Hopkins University, School of Medicine, Baltimore, Maryland ³The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, School of Medicine, Baltimore, Maryland

⁴Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland

BACKGROUND. Human intestinal trefoil factor 3 (TFF3) is a member of a family of polypeptides encoded by a cluster of genes on chromosome 21. Through gene expression profiling studies TFF3 mRNA has been found to be overexpressed in prostate cancer.

METHODS. We used immunochemistry on tissue microarrays and software tools, collectively

www.modernpathology.org

Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis

Bora Gurel¹, Tsuyoshi Iwata¹, Cheryl M Koh¹, Robert B Jenkins², Fusheng Lan², Chi Van Dang³, Jessica L Hicks¹, James Morgan¹, Toby C Cornish¹, Siobhan Sutcliffe⁴, William B Isaacs^{5,6,7}, Jun Luo^{5,7} and Angelo M De Marzo^{1,5,6,7,8}

¹Department of Pathology, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA; ²The Mayo Clinic, Minnesota Siteman Cancer Center, Rochester, MN, USA; ³Division of Hematology, Department of Medicine, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA; ⁴The Alvin J. Siteman Cancer Center, Department of Surgery, Washington University School of Medicine, St Louis, MO, USA; ⁵Department of Urology, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA; ⁶The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, School of Medicine, Baltimore, MD, USA; ⁷The Brady Urological Research Institute, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA and ⁸Department of Oncology, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA

The MYC onco-protein is a transcription factor that regulates cell proliferation, metabolism, protein synthesis, mitochondrial function and stem cell renewal. A region on chromosome 8g24 encompassing the MYC locus is amplified in prostate cancer, but this occurs mostly in advanced disease suggesting that MYC alterations occur late in prostate cancer. In contrast, MYC mRNA is elevated in most prostate cancers, even those of relatively low stage and grade (eg Gleason score 6) suggesting that MYC plays a role in initiation. However, since MYC protein levels are tightly regulated, elevated MYC mRNA does not necessarily imply elevated MYC protein. Thus, it is critical to determine whether MYC protein is elevated in human prostate cancer, and if so, at what stage of the disease this elevation occurs. Prior studies of MYC protein localization have been hampered by lack of suitable antibodies and controls. We utilized a new anti-MYC antibody coupled with genetically defined control experiments to localize MYC protein within human tissue microarrays consisting of normal, atrophy, PIN, primary adenocarcinoma, and metastatic adenocarcinoma. Nuclear overexpression of MYC protein occurred frequently in luminal cells of PIN, as well as in most primary carcinomas and metastatic disease. MYC protein did not correlate with gain of 8q24, suggesting alternative mechanisms for MYC overexpression. These results provide evidence that upregulation of nuclear MYC protein expression is a highly prevalent and early change in prostate cancer and suggest that increased nuclear MYC may be a critical oncogenic event driving human prostate cancer initiation and progression.

Modem Pathology (2008) 21, 1156-1167; doi:10.1038/modpathol.2008.111; published online 20 June 2008

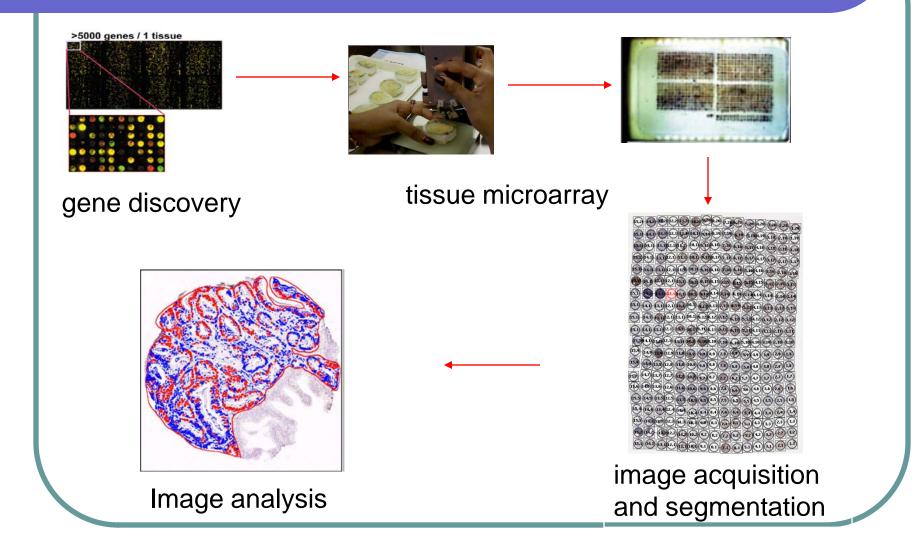
Keywords: MYC oncoprotein; prostatic carcinoma; prostatic intraepithelial neoplasia

Automated subcellular localization and quantification of protein expression in tissue microarrays

ROBERT L. CAMP, GINA G. CHUNG & DAVID L. RIMM

Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA Correspondence should be addressed to D.L.R.; email: david.rimm@yale.edu

Published online 21 October 2002; doi:10.1038/nm791


The recent development of tissue microarrays—composed of hundreds of tissue sections from different tumors arrayed on a single glass slide—facilitates rapid evaluation of large-scale outcome studies. Realization of this potential depends on the ability to rapidly and precisely quantify the protein expression within each tissue spot. We have developed a set of algorithms that allow the rapid, automated, continuous and quantitative analysis of tissue microarrays, including the separation of tumor from stromal elements and the sub-cellular localization of signals. Validation studies using estrogen receptor in breast carcinoma show that automated analysis matches or exceeds the results of conventional pathologist-based scoring. Automated analysis and sub-cellular localization of betacatenin in colon cancer identifies two novel, prognostically significant tumor subsets, not detected by traditional pathologist-based scoring. Development of automated analysis technology empowers tissue microarrays for use in discovery-type experiments (more typical of cDNA microarment for compartmentalization of expression) utilizes fluorescent tags to separate tumors from stroma and to define subcellular compartments. The distribution of a target antigen is then quantitatively assessed according to its co-localization with these tags. As subcellular compartments (for example, membrane, cytoplasm, nuclei and so forth) of different tissues and tumors vary widely in size and shape, traditional methods of defining compartments based on morphometric criteria (that is, feature extraction) perform poorly on a large-scale basis. Rather than counting target-containing features, PLACE delineates target expression as the sum of its intensity divided by the total size of the assayed compartment.

As the thickness of tissue sections makes it difficult to discriminate between overlapping subcellular compartments, we have also developed a novel, rapid exponential subtraction algorithm (RESA), which subtracts an out-of-focus image, collected slightly below the bottom of the tissue, from an in-focus image, based on pixel intensity, signal-to-noise ratio, and the

Other Uses of Scanning:

- Telepathology
 - Diagnosis
 - Consultation
- Education

Acknowledgements

Special Thanks:

Angelo De Marzo, M.D, Ph.D. Marc Halushka, M.D, Ph.D. Helen Fedor, B.S. Toby Cornish, M.D, Ph.D. Marcella Southerland, B.S. James Morgan, B.S.

http://users.skynet.be/J.Beever/hosepipe.html