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SUMMARY
Genetically encoded fluorescent biosensors are powerful tools for monitoring biochemical activities in live
cells, but their multiplexing capacity is limited by the available spectral space. We overcome this problem
by developing a set of barcoding proteins that can generate over 100 barcodes and are spectrally separable
from commonly used biosensors. Mixtures of barcoded cells expressing different biosensors are simulta-
neously imaged and analyzed by deep learningmodels to achievemassivelymultiplexed tracking of signaling
events. Importantly, different biosensors in cell mixtures show highly coordinated activities, thus facilitating
the delineation of their temporal relationship. Simultaneous tracking of multiple biosensors in the receptor
tyrosine kinase signaling network reveals distinct mechanisms of effector adaptation, cell autonomous
and non-autonomous effects of KRAS mutations, as well as complex interactions in the network. Biosensor
barcoding presents a scalable method to expand multiplexing capabilities for deciphering the complexity of
signaling networks and their interactions between cells.
INTRODUCTION

To understand the complex regulatory relationship between

signaling, metabolic, and other biochemical activities in cells, it

is often necessary to study their dynamics under a multitude of

perturbation conditions. Genetically encoded fluorescent biosen-

sors offer a versatile tool to continuously monitor a wide range of

biochemical activities in live cells while revealing cell-to-cell vari-

ability that ismasked in ensemblemeasurements (Newman et al.,

2011; Zhang et al., 2002). A major drawback of fluorescent bio-

sensors is their limited multiplexing capability due to the broad

emission spectra of fluorescent proteins (FPs) and limited avail-

ability of spectral space (Welch et al., 2011). Efforts have been

directed toward expanding the spectral range by developing

far-red/infrared fluorophores, replacing two fluorophore biosen-

sors (e.g., those based on fluorescence resonance energy trans-

fer [FRET]) with single-fluorophore designs, and computational

multiplexing to reveal the spatiotemporal relationship between

biosensors (Chernov et al., 2017; Grant et al., 2008; Machacek

et al., 2009; Marston et al., 2020; Mehta et al., 2018; Regot

et al., 2014). Despite these improvements, nomore than a handful

of biosensors can be imaged concurrently. To overcome this lim-

itation, we developed a ‘‘biosensor barcoding’’ method for highly

multiplexed tracking of fluorescent biosensors. The key idea is to

label cells with barcoding proteins made of different fluorophores

targeted to distinct subcellular locations. Combinations of bar-

coding proteins are then used to generate barcodes that uniquely
Cell 184, 6193–6206, Decem
This is an open access article under the CC BY-N
identify the cells expressing specific biosensors (Figures 1A–1C).

To track multiple activities in parallel, mixed populations of bar-

coded cells are imaged in a time-lapse microscopy experiment.

Activities from cells with the same barcode are pooled together

to obtain the temporal profile of thecorrespondingbiosensor (Fig-

ures 1D–1F; Video S1). Our method is compatible with any

biosensor with emission wavelengths between 450 nm and

550 nm, including the majority of existing FRET or single fluoro-

phore biosensors.

RESULTS

Barcoding cells
In theory, N different barcoding proteins can be combined to

create 2N different barcodes, assuming binary expression (i.e.,

not expressed or expressed). In reality, the expression of barcod-

ing proteins is a continuum, and low-expressors may be hard to

distinguish from nonexpressors, thus precluding the use of all

combinations. To ensure robust barcode identification, we only

included combinations of two barcoding proteins that were (1) of

different colors; and (2) targeted to different subcellular locations.

Barcoding proteins also need to be spectrally separable from bio-

sensors. A large number of fluorescent biosensors are based on

detecting changes in (1) the intracellular localization or intensity

of a single fluorophore, in many cases green FP (GFP), or (2) the

FRET efficiency between a donor and an acceptor, most

commonly cyan and yellow FPs (CFP and YFP) (Greenwald
ber 9, 2021 ª 2021 The Author(s). Published by Elsevier Inc. 6193
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Schematic of biosensor barcoding

(A) Excitation (Ex) and emission (Em) spectra of

barcoding proteins (EBFP2, TagRFP, mCardinal,

and iRFP702) and biosensors. Excitation laser lines

(405/561/633 nm for barcodes; 458 nm for bio-

sensors) and the corresponding ranges of emission

detection are indicated by black lines and blue

boxes, respectively. The profiles of different FPs

were generated using the FPbase Spectra Viewer

(Lambert, 2019).

(B) Targeting sites for barcoding proteins.

(C) A pair of barcoding proteins (different colors,

different targeting sites) are co-expressed with a

fluorescent biosensor in the cell. Barcode digits

from left to right represent: TagRFP, mCardinal,

iRFP702, and BFP targeted to nucleus (1), plasma

membrane (2), nuclearmembrane (3), cytosol (4), or

non-expressed (0). For example, 1200 denotes

TagRFP at location 1 (nucleus), mCardinal at loca-

tion 2 (plasmamembrane), and no iRFP702 or BFP.

(D) Cells are mixed and imaged for barcodes using

spectral detectors and for biosensors using CFP/

YFP channels. The identity of the biosensor can be

inferred by linear unmixing of the barcode spectral

images.

(E) Activities corresponding to the same barcodes

are averaged to obtain the temporal profile of each

biosensor.

(F) Representative images of HeLa cells expressing

different biosensors identified by barcodes and

changes of biosensor signals over time upon

treatment with EGF. Scale bar, 100 mm.

See also Figure S1 and Video S1.
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et al., 2018; Terai et al., 2019). Therefore, the cyan-green-yellow

rangeof theemissionspectrum(�450–550nm)coversavastnum-

ber of existing fluorescent biosensors (Greenwald et al., 2018).

We first tested whether red or far-red FPs (550–700 nm; red

FPs for brevity) targeted to different subcellular locations can

be used as barcoding proteins. To this end, we constructed plas-

mids encoding sequences of TagRFP (Shaner et al., 2008),

mCardinal (Chu et al., 2014), or iRFP702 (Shcherbakova and Ver-

khusha, 2013) fused to targetingmotifs for localizing to (1) the nu-

cleus; (2) the plasmamembrane; (3) the nuclear membrane; or (4)

the cytoplasm (Figures 1A and 1B). We took spectral images of

HeLa cells expressing pairs of barcoding proteins under a

confocal microscope equipped with a spectral detector.

Knowing the reference emission profile of individual fluoro-

phores, the contribution of each can be determined by linear un-

mixing (Figure S1A). To further increase the number of barcodes,

we included BFP (EBFP2) (Ai et al., 2007) as the fourth fluoro-

phore because (1) it is not excited by the 458 nm laser used for

biosensors; and (2) a properly chosen spectral range (400–

430 nm) detects the emission fromBFP but not CFP used for bio-

sensors (Figures 1A and S1B). Using four FPs targeted to four

subcellular locations, a total of (4 3 3/2) 3 4 3 3 = 72 barcodes

can be generated.
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Tracking multiple biosensor
activities in barcoded cells
We selected 24 FRET or single-fluoro-
phore biosensors that report the activities of 14 distinct targets

in various subcellular compartments, including kinases (AMPK,

ERK, p38, JNK, PKC, FAK, Src, and PI3K), G-proteins (Gai1,

Gai2, and Gai3), calcineurin, RhoA GTPase, and calcium (Table

S1). We coexpressed each biosensor with a unique pair of bar-

coding proteins in HeLa cells by transient transfection. Cells

with different biosensor/barcode combinations were then mixed

and imaged simultaneously. We obtained the activities for indi-

vidual biosensors by averaging across cells with corresponding

barcodes, identified by linear unmixing of spectral images as

described above. We stimulated cells with six pharmacological

agents including 2-deoxyglucose (2DG), anisomycin, epidermal

growth factor (EGF), ionomycin, phorbol-12,13-dibutyrate

(PDBu), and UK14304, which have been used to test these bio-

sensors in previous studies (Table S1). We analyzed the re-

sponses of all 24 biosensors to the agents and vehicle control

(Figure 2A; Table S2). The averaged biosensor activities re-

sponded to previously reported stimuli (Figure 2A, black boxes),

but wide variations were noted between different cells express-

ing the same biosensor (Figure 2B). Moreover, different biosen-

sors that detect the same molecular activity may display distinct

kinetics. For example, translocation-based ERKKTR (Regot

et al., 2014) and FRET-based EKAR (Harvey et al., 2008) both



Figure 2. Multiplexed real-time tracking of biosensor activities in

barcoded cells

(A) Mixed population of barcoded HeLa cells expressing 24 FRET (blue) and

non-FRET (green) biosensors (Table S1) were stimulated with the indicated

activators (2DG, 10 mM 2-deoxyglucose; ANI, 1 mg/mL anisomycin; EGF,

100 ng/mL EGF; ION, 1 mM ionomycin; PDB, 200 nM phorbol-12,13-dibuty-

rate; and UK, 10 mM UK14304). For each barcode, the activities were

normalized to pre-stimulus levels across cells of the corresponding barcode

and adjusted for its dynamic range (Table S2). Black boxes indicate expected

responses to known activators. Red boxes indicate additional responses.

(B) Individual cell traces of EKAR and ERKKTR activities normalized to pre-

stimulus levels. Thick blue lines represent the average activities.

(C) Comparison of activation kinetics of EKAR and ERKKTR obtained from

mixed barcoded cells. Activities are scaled to the peak responses and

represent the mean of 46 (EKAR) and 22 (EKRKTR) cells.

See also Table S3.
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report ERK activation, but the kinetics of ERKKTR was delayed

compared to that of EKAR, consistent with previous observa-

tions (Figure 2C) (Pargett et al., 2017; Yang et al., 2018).

To validate the results derived from mixed barcoded cells, we

compared the responses to those from a homogeneous popula-

tion of cells expressing single biosensors. The kinetics of the re-

sponses obtained from single-cell populations were in general

agreement with those from mixed-cell populations (Table S2).

Because all responses initiated between 3–9min after stimulation,

we compared their magnitude at 9 min and found that for the ma-

jority (75%) of biosensors, no significant difference was noted be-

tween the two groups (Table S2). Analysis of responses 15min af-

ter stimulation produced a similar result (Table S2). For biosensors

that showed statistically significant differences, the responses

were smaller in the mixed population group in about half of the

cases and larger in the remainder. Such variability is expected
among experimental replicates with identical protocols (see the

section ‘‘Synchrony among biosensors in barcoded cell mixtures’’

below). To rule out cross-transfection between different barcoded

cells (e.g., throughcarryoverof transfectionmaterial orexosomes),

we mixed cells transfected with single barcoding proteins of

different colors and targeting sites. In over 600 cells, no instance

of double expression was found, suggesting that cross-transfec-

tion is an extremely unlikely event (Figures S1C and S1D).

In addition to the responses to known activators, our analyses

revealed unanticipated responses, such as ionomycin-induced

activation of AMPK, JNK, p38, RhoA, and PKC, as well as

PDBu-induced activation of ERK and p38 (Figure 2A, red boxes).

These observations are supported by earlier reports based on a

variety of assays in different cell types (Table S3). Taken

together, these results demonstrate that (1) the barcodes allow

for correct identification of cells expressing different biosensors

and are compatible with biosensor imaging without affecting

biosensor responses; (2) the technique reveals variations be-

tween cells and kinetics of biosensors; and (3) multiplexed

biosensor imaging can facilitate comprehensive identification

and kinetic characterization of multiple cellular activities.

Deep learning models for barcode reading
To facilitate the identification of barcoded cells, we developed

deep learning models for automated barcode reading. Using

deep convolutional neural network models trained on curated

images, we classified a testing set of linearly unmixed images

of cells expressing pairs of barcoding proteins. The average ac-

curacy was 97%, but varied from 50% to 100% for individual

barcodes mostly due to suboptimal unmixing of two red FPs.

To overcome this problem, we adopted a new barcoding strat-

egy by pairing BFP with one of the three red FPs targeted to

any of the four subcellular locations, generating a total of 4 3

4 3 3 = 48 different barcodes. We replaced TagRFP with

mCherry, which was brighter but harder to unmix with mCardinal

in the original barcoding scheme (Figure 3A).

To test the new barcoding scheme for classification by deep

learning models, we coexpressed BFP targeted to either the nu-

cleus or plasma membrane along with a red FP targeted to four

different subcellular locations in HeLa cells. Spectral images

were acquired and unmixed using the reference spectra of

mCherry, mCardinal, and iRFP702 to determine the identity of

the red FP. The BFP image, once classified, could serve as a

reference for red-FP localization. Therefore, we trained three

deep learning models to classify (1) BFP images; (2) red FP im-

ages combined with nuclear BFP; and (3) red FP images com-

bined with plasma membrane BFP (Figure 3B). We tested the

performance of these models on images of barcoded cells and

achieved an average accuracy of 99% (range, 92.5%–100%)

(Figure 3C). The cause of misidentification included saturating

or dim fluorescence signals, the presence of a second cell in

the region selected for analysis, and unhealthy or apoptotic cells.

The time to analyze one imaging experiment (�300 cells) was

less than 10 s using deep learning models (Intel Core i5-7500

CPU @ 3.40 GHz, 3.41 GHz, 32 GB RAM). For comparison, hu-

man reading of the same number of barcodes took �2 h.

Together, these results demonstrated that deep learning models

can achieve high efficiency and accuracy in barcode reading.
Cell 184, 6193–6206, December 9, 2021 6195



Figure 3. Barcode reading using deep learning models

(A) Emission spectra of mCherry (mCh), mCardinal (mCar), and iRFP702 (iRFP) used for barcode reading by deep learning models. TagRFP (TRFP), used in the

original barcoding scheme (Figure 1), was replaced by mCherry.

(B) Cells were barcoded by one of the red FPs targeted to four subcellular locations plus BFP targeted to the nucleus or the plasma membrane. The BFP image

was classified by model 1. For the red barcoding proteins, spectral profiles were used to determine which of the three unmixed channels corresponded to the

correct FP. The unmixed red FP image was then combined with BFP image and classified by model 2 or model 3 depending on whether BFP signal was in the

nucleus or membrane. The output was filtered by a certainty threshold and checked for the existence of the barcode.

(C) The confusion matrix and identification rate (%) for all barcodes identified by model 2 (top) and model 3 (bottom) under indicated certainty thresholds. In

general, higher certainty thresholds lead to increased accuracy but decreased identification rate. The four numbers in the barcode denote mCherry, mCardinal,

iRFP702, and BFP localized to the nucleus (1), plasma membrane (2), nuclear membrane (3), cytosol (4), or non-expressed (0), respectively.
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Expanding the barcoding toolkit
We next sought to extend the success with barcoding HeLa cells

to other cell lines, including 293T, MCF7, U87MG, SiHa, U2OS,

and A6L, which varied inmorphology and transfection efficiency.

High transfection efficiency was achieved in 293T, MCF7, and

U2OS cells. Most barcodes in these cells were readily identifi-

able (Figures 4A, 4B, and S2A). Interestingly, in some U2OS

cells, plasma membrane-targeted FPs appeared as a broad

‘‘haze’’ that resembled cytosolic signals (e.g., the D2E3 cell in

Figure S2A). 3D reconstruction of z-stacks from these cells re-

vealed a ‘‘cowboy hat’’ morphology with extended protrusion

of the membrane around the cell periphery (Figure S2B).

Although the broad membrane signals might appear cytosolic

when examined in isolation, they were still distinct from the cyto-

solic signal in the same cell (e.g., the D2E4 cell in Figure S2A).

We applied deep learning models to classify images of bar-

coded 293T, MCF7, and U2OS cells. The models trained on
6196 Cell 184, 6193–6206, December 9, 2021
HeLa images correctly identified 97.8% (range, 94.8%–100%)

of barcoded 293T cells (Figure 4C). However, the accuracy

was lower for MCF7 (90.1%) and U2OS (81.4%) (Figures 4D

and S2C), in part due to the aforementioned broad membrane

signals. We therefore trained new models using MCF7 and

U2OS images, which achieved accuracy of 99.2% (range,

93.3%–100%) and 98.1% (range, 92.7%–100%) for MCF7 and

U2OS cells, respectively (Figures 4D and S2C). These results

demonstrate that barcode reading by deep learning models

can be generalized to different cell lines.

To overcome the low transfection efficiency in U87MG, SiHa,

and A6L cells, we generated lentiviral vectors encoding barcod-

ing proteins using the Gateway recombination system (Fig-

ure S3A). Co-transduction of these cells with pairs of lentiviruses

led to robust expression of barcoding proteins that were local-

ized to the expected subcellular sites (Figures S3B–S3D). In

addition to barcoding a broader range of cell lines, the more



Figure 4. Expanding the barcoding toolkit

(A andB)293TandMCF7cells transfectedwithBFP

targeted to the nucleus (D1) or plasma membrane

(D2) along with mCherry targeted to one of the four

subcellular locations (E1, nucleus; E2, plasma

membrane; E3, nuclear membrane; and E4,

cytosol). Scale bars, 10 mm.

(C) Confusion matrix (%) of 293T cells barcoded

with nuclear or cytoplasmic BFP plus mCherry tar-

geted to one of the four subcellular locations using

the deep learning models trained on HeLa cells.

(D) Confusion matrix (%) of barcoded MCF7 cells

using the deep learning models trained on HeLa

cells (original models, left) and new models trained

on MCF7 cell images (right). See also Figure S2 for

U2OS cells.

(E) Emission profiles of red FPs acquired on a Zeiss

LSM 780 microscope equipped with a GaAsP de-

tector. For each fluorophore, the curve represents

themean of 100HeLa cells expressing the nucleus-

targeted version of the FP, with the full range of

variation shown as shaded area. See also Table S4.
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stable expression of lentiviral vectors compared to transient

transfections will allow for long-term imaging experiments.

We reasoned that the number of barcodes in the new scheme

can be easily scaled upwith additional red FPs that are spectrally

separable. In this scheme, red FPs were identified by their peak

emissions based on the spectral profile acquired using a Zeiss

GaAsP detector in 15 bins (of 9 nm each) between 560 and

695 nm. For example, the peaks of mCherry, mCardinal, and

iRFP702 fell within bins 6, 10, and 15, respectively (Figure 4E).

Using the spectral information from FPbase (Lambert, 2019) as

a guide, we selected additional red FPs including LSS-mKate2,
Ce
mStrawberry, RDSmCherry1, mPlum,

mNeptune, mNeptune2.5, iRFP670, and

iRFP682 for testing and acquired their

emission profiles by imaging HeLa cells

expressing nucleus-targeted versions of

these FPs (Figure 4E). Eight of the

FPs (TagRFP, mStrawberry, mCherry,

RDSmCherry1, mCardinal, iRFP670,

iRFP682, and iRFP702) showed distinct

emission peaks in all cells examined (Fig-

ure 4E; Table S4). With four different sub-

cellular localizations, the combination of

BFP and one of the eight red FPs can

generate a total of 4 3 4 3 8 = 128

different barcodes. Besides tracking an

even greater number of biosensors, the

additional fluorophores can compensate

for the possible loss of usable subcellular

locations in cells with more challenging

morphologies.

Synchrony among biosensors in
barcoded cell mixtures
A common problem associated with

comparing or combining biosensor mea-
surements from multiple experiments is the variability caused

by factors such as subtle changes in cell density or temperature.

We reasoned that such variability can be minimized by subject-

ing mixed populations of barcoded cells to a common physico-

chemical environment, allowing accurate comparison of

different biosensors. To test this idea, we examined the results

of ten experimental replicates in which barcoded cells express-

ing PH-AKT, EKAR, nuc-EKAR, Src, and Lyn-FAK biosensors

were stimulated with EGF. Despite identical settings, variations

in the timing and amplitude of the responses were noted (Fig-

ure 5A). We fitted individual traces to a biphasic exponential
ll 184, 6193–6206, December 9, 2021 6197



Figure 5. Synchrony between biosensors in mixed barcoded cells

(A) Responses of biosensors obtained from mixed barcoded cells stimulated with 10 ng/mL EGF, added 2 min after imaging started. Traces of mean responses

are shown in different colors for ten experimental repeats (E1–E10).

(B) Response initiation time (RIT) for each biosensor based on the traces in (A) (see STAR Methods and Figure S4). Error bars, 95% confidence interval.

(C) DRIT, defined as individual RIT minus the average RIT across the ten experiments for each biosensor. Error bars, 95% confidence interval.

(D) Biosensor responses from mixed barcoded cells stimulated with 0.5 and 10 ng/mL EGF at 4 and 18 min (red arrows), respectively. Traces of mean ± SD from

two experiments are shown.

(E) Cross-correlation between the responses of different biosensors between the same and different experiments from (D).

(F) Biosensor responses frommixed barcoded cells stimulatedwith 1, 10, and 100 ng/mL EGF at 6, 21, and 36min (red arrows), respectively. Traces ofmean ±SD

from two experiments are shown.

(G) Cross-correlation between the responses of different biosensors between the same and different experiments from (F). In (E) and (G), boxes indicate pairs of

biosensors detecting the same proteins (ERK) or one protein and its immediate effector (Src/FAK or RhoA/ROCK) from the same (yellow boxes) or different (red

boxes) experiments.

See also Data S1.
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model to obtain the response initiation time (RIT) of the re-

sponses (Figures 5B and S4). Comparison of the RITs of individ-

ual experiments and those averaged across ten experiments

indicated that different biosensors were synchronized in the

same experiment despite significant variabilities between exper-

iments (Figure 5C).

We next examined the responses tomore complex stimulation

schemes by treating barcoded cells expressing EKAR, nucE-

KAR, PH-AKT, Lyn-FAK, and the Src biosensor sequentially

with 0.5 and 10 ng/mL EGF. In two experimental repeats, the

response to the second stimulus was delayed in one but imme-

diate in the other (Figure 5D). Cross-correlation analyses showed

higher similarities within the same experiment than between ex-

periments (Figure 5E). Notably, in the same experiment, highest

correlation occurred between the two ERK biosensors, EKAR

and nucEKAR, and between biosensors for FAK and Src, which

are known to activate each other through direct interactions

(Frame et al., 2010) (Figure 5E, yellow boxes). The correlation be-

tween these two pairs of biosensors was much lower across

different experiments (Figure 5E, red boxes). In a second set of

experiments in which cells were stimulated with 1, 10, and

100 ng/mL EGF (Figure 5F), a high correlation was noted be-

tween biosensors for Src and FAK and between those for

RhoA (Fritz et al., 2013) and ROCK (Li et al., 2017) within the

same experiment (Figure 5G, yellow boxes) but not between

two experimental repeats (Figure 5G, red boxes). Note that

ROCK is a downstream effector of RhoA through direct binding

(Amano et al., 2010). Therefore, the strong correlation between

biosensor pairs is consistent with known interactions between

signaling proteins. Together, the above results suggest a high

degree of synchronization among the activities of different bio-

sensors in the same experiment and significant variations of

the same biosensor across different experiments.

Interrogating the kinetics of signaling networks
We next investigated the responses of the receptor tyrosine ki-

nase (RTK) signaling network to EGF and inhibitors. After testing

28 biosensors for their responsiveness to EGF (Table S1), we

selected 10 responders that detected the activity of the RTK/

EGF receptor (EGFR) aswell as itsmultiple downstreameffectors,

including PI3K, Syk, ERK, calcium, RhoA, Src, S6K, FAK, and

ROCK (Figure 6A). We used biosensor barcoding to simulta-

neously record their responses to 100 ng/mLEGF, and the results

from two representative experiments are shown in Figure 6B. Pic-

chuEV, an RTK biosensor (Komatsu et al., 2011), showed a

gradual increase in activity before reaching a plateau at �12 min

after stimulation. Interestingly, the downstream biosensors dis-

played varying degrees of adaptation after reaching the peak

level. Importantly, the adaptation of all downstream effectors

except S6K started while PicchuEV activity was still increasing.

To rule out the possibility that RTK inactivation was not detected

byPicchuEV in real time,we treatedEGF-stimulated cellswith the

EGFR inhibitor gefitinib and found immediate decrease in

PicchuEV activity (Figure S5A). Therefore, the plateauing of the

PicchuEV signal indicated continued RTK activation, and down-

stream adaptation was not caused by RTK inactivation.

We investigated the responses to different concentrations of

EGF. As expected, higher EGF generally induced greater re-
sponses (Figure 6C). However, the temporal profile of the re-

sponses displayed unique features that fell into three classes:

(1) stimulus-dependent plateau; (2) stimulus-dependent adapta-

tion; and (3) all-or-none (Figure 6D). Class I included only one

biosensor, PicchuEV, which reached a plateau level determined

by the stimulus level. Class 2 included Syk, Src, FAK, RhoA2G,

EV-ROCK, and S6K, which reached a stimulus-dependent peak

level followed by adaptation at various rates. (Note that the seem-

ingly non-adapting response of Syk at the highest EGF dose was

caused by a delayed secondpeak inducedby continued receptor

activation in some experiments, e.g., Exp 1 in Figure 6B.) Class 3

includedGCaMP6S,PH-AKT,andEKAR,which respondedwitha

stimulus-independent peak to EGF above a threshold level. To

determine the level of cooperativity for different responses, we

fit the peak response versus EGF concentration to a Hill equation

(Figure 6E).Whereas class 1 and 2 responses hadHill coefficients

close to 1 and thus were noncooperative, class 3 responses

showed strong cooperativitywith highHill coefficients, consistent

with previous studies on PI3K and ERK signaling (Huang and Fer-

rell, 1996; Shindo et al., 2016; Zhan et al., 2020).

To check whether partial responsesmay result from averaging

across all-or-none responders, we examined the responses of

individual cells to escalating doses of EGF. For class 1 and 2 bio-

sensors, the responses triggered by 1 ng/mL EGF were smaller

than those triggered by 10 ng/mL EGF (Figure S5B; note that

100 ng/mL EGF failed to trigger a third response in most cells

likely due to previous responses). In contrast, the responses of

class 3 biosensors were independent of EGF doses. Therefore,

the dose response features of different classes arose at the level

of individual cells.

We noticed that EGF triggered transient spreading of cells

driven by actin polymerization, as detected by recruitment of

LifeAct (Riedl et al., 2008) to the protrusions (not shown). To

test the possible involvement of actin in adaptation, we pre-

treated cells with jasplakinolide or latrunculin B, which stabilizes

or inhibits actin polymerization, respectively. Neither jasplakino-

lide nor latrunculin B blocked the adaptation of class 2 and class

3 responses (Figures S5C and S5D), suggesting that actin dy-

namics are not required for adaptation. Interestingly, the re-

sponses of RhoA2G, EV-ROCK, and GCaMP6S were greatly

diminished, suggesting a possible role of actin in RhoA, ROCK,

and calcium activation.

We reasoned that the kinetic and dose response features of

different biosensors reflect the topology of regulatory interac-

tions. Specifically, in class 1 responses, the dose-dependent pla-

teaus canbedescribedby a simple bindingmodel (FigureS6A). In

class 2 responses, adaptation to continued stimulation can result

from either negative feedback (NFB) or incoherent feedforward

loop (IFFL) mechanisms (Hoeller et al., 2014; Ma et al., 2009). In

both NFB and IFFL models, larger stimuli trigger responses with

greater amplitude, but in IFFL, the rateofdecay is faster inmultiple

simulation settings, leading to shorter overall responses (Iglesias

and Shi, 2014; Tu and Rappel, 2018). Because class 2 responses

did not show a stimulus-dependent change in the decay rate of

adaptation (Figure 6D), we chose the NFBmodel in our simulation

(Figure S6B), although an IFFL mechanism cannot be completely

ruled out. Finally, for class 3 responses, the all-or-none features

are characteristic of excitable networks, which generally involve
Cell 184, 6193–6206, December 9, 2021 6199



Figure 6. Responses to RTK stimulation

(A) 10 biosensors (in color) and their targets mapped to the RTK signaling network.

(B) Responses scaled to the peak levels of the 10 biosensors to 100 ng/mL EGF stimulation at 0 min in mixed barcoded cells from two independent experiments.

(C) Responses of biosensors in barcoded cells to four concentrations of EGF, applied at 6 min. The vertical axes represent biosensor activity (mean ± SD of cells

from 5 independent experiments) normalized to the prestimulus levels

(D) Activities in (C) plotted on the same graph. The biosensors were grouped into three classes based on their kinetic and dose-response features (see text).

(E) Peak responses (mean ± SEM) at different EGF doses, normalized to the peak levels induced by 100 ng/mL EGF, fit to a Hill equation (red dashed line, with the

Hill coefficient shown).

See also Figures S5 and S6.
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a positive feedback, or autocatalytic loop, that drives a full

response once a threshold is crossed, as well as a delayed nega-

tive feedback loop that shuts off the response (Xiong et al., 2010)

(Figure S6C). We carried out computational simulations of math-

ematical models representing different network topologies. With

appropriate selection ofmodel parameters, wewere able to reca-

pitulate the experimentally observed dose response kinetics.

Delineating cell autonomous and non-autonomous
interactions of signaling networks
The ability to barcode different cell populations in a mixture al-

lows for the discrimination between cell autonomous and non-
6200 Cell 184, 6193–6206, December 9, 2021
autonomous interactions. As a demonstration, we investigated

the effects of mutant KRAS, one of the most frequent drivers of

cancer. Taking advantage of the membrane localization of

KRAS by farnesylation, we used BFP-fused KRAS as a barcod-

ing protein. Expression of BFP-fused wild-type KRAS had no ef-

fect on the activity of the RAS effector ERK, whereas expression

of BFP-fused oncogenic (G12V) and dominant-negative (S17N)

mutants of KRAS led to persistently elevated and suppressed

ERK activities, respectively, suggesting that BFP fusion did not

affect the function of KRAS and its mutants (Figure S7A).

We used biosensor barcoding to examine the responses of

HeLa cells expressing KRAS(G12V). Compared to the



Figure 7. Interactions between pathways and cells

(A) Normalized responses (mean ± SD) of control cells alone and KRAS(G12V) cells alone to 100 ng/mL EGF stimulation added at 6 min.

(B) Normalized responses (mean ± SD) of control and KRAS(G12V) cells in a 1:1 mix to 100 ng/mL EGF (yellow). The responses of control and KRAS(G12V) cells

when they were separately stimulated with 100 ng/mL EGF were plotted for comparison (blue). See also Figure S7.

(C) Normalized responses (mean ± SD) of control and KRAS(G12V) cells in a 1:1 mix to 100 ng/mL EGF with pretreatment of 10 mM TAPI-1 (MMPi, matrix

metalloproteinase inhibitor) for 1 h prior to the experiments (yellow). The responses of control and KRAS(G12V) cells when they were separately stimulated with

100 ng/mL EGF were plotted for comparison (blue).

(D) Comparison of raw activities (mean ± SEM) of control and KRAS(G12V) cells in a 1:1 mix pretreated with 10 mMTAPI-1 (MMPi) and stimulated with 100 ng/mL

EGF. The raw activities represent mean ±SEM of YFP/CFP (for PicchuEV, RhoA-2G, EV-ROCK, EKAR, and EV-S6K), CFP/YFP (Syk, Src, and Lyn-FAK), cytosolic

fluorescence (GCaMP6S), or 1/cytosolic fluorescence (PH-AKT).

(legend continued on next page)
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stereotypical EGF responses of control cells, KRAS(G12V)-ex-

pressing cells had smaller responses that were often followed

by a second peak (Figure 7A) and showed significant variability

between experiments (Figure S7B). Next, we mixed barcoded

control and KRAS(G12V) cells before stimulation with EGF. Inter-

estingly, the control cells in the mixture displayed smaller,

biphasic responses (Figure 7B, top) with increased experimental

variability (Figure S7C), suggesting cell non-autonomous effects

mediated by KRAS(G12V) cells. The responses of KRAS(G12V)

cells were similar regardless of the presence or absence of con-

trol cells (Figure 7B, bottom). We surmised that KRAS(G12V)

may exert their effect through metalloproteinases of the MMP

or ADAM families, which have been shown to release EGFR li-

gands that mediate the propagation of ERK activation across

cell populations (Aoki et al., 2013). To test this hypothesis, we

pretreated the control-KRAS(G12V) mixture with the MMP/

ADAM inhibitor (MMPi) TAPI-1 before stimulation. Indeed, the ef-

fects of KRAS(G12V) cells on the control cells were largely elim-

inated (Figure 7C). Because cells in the same mix are synchro-

nized (Figure 5), we reasoned that the ‘‘raw activity’’ of mixed

control and KRAS(G12V) cells can be directly compared using

non-normalized FP fluorescence (Figure 7D). As expected,

EKAR showed a high basal activity that was not further activated

by EGF in KRAS(G12V) cells, apparently due to direct activation

by the constitutively active KRASmutant. Interestingly, the activ-

ities were altered in several other biosensors in KRAS(G12V)

cells. We verified the effects of KRAS(G12V) on FAK and ERK

by immunoblotting (Figure S7D). Together, these results reveal

the distinct effects of KRAS(G12V) on different nodes in the

RTK signaling network through both cell-intrinsic and paracrine

mechanisms.

We interrogated the interactions within the RTK signaling

network by tracking the biosensor responses to a panel of

inhibitors targeting different nodes (Figure 7E; Table S5).

To quantify the effects of each inhibitor, we integrated the

changes in biosensor activity over time, and compared the

effects to those of the vehicle control. In addition to the ex-

pected targets, several inhibitors altered the activities of

other nodes in the network (Figure 7F). Inhibitory and acti-

vating effects of the inhibitors on each node suggest posi-

tive and negative interactions, respectively (Figure 7G). It

should be noted that some of these interactions may be in-

direct or may result from off-target effects of the inhibitors,

and are likely cell-type specific. Nevertheless, the results

highlight the complex regulatory relationships between no-

des in the RTK signaling network and represent a powerful

strategy to discover unknown interactions within signaling

networks in cells of interest. Together, our results demon-

strated the power of biosensor barcoding in delineating

both cell autonomous and non-autonomous interactions

within signaling networks.
(E) Biosensors (blue) and inhibitors (purple) targeting the RTK signaling network.

(F) Inhibition matrix showing the effect of inhibitors on biosensor activities. The effe

time points after the inhibitor was added minus that of DMSO control. Black box

negative effects are shown in red and green, respectively, and the statistical sign

(G) Feedback loops inferred from the inhibition matrix. Positive (green) or negat

activation, respectively, of another node in the network.
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DISCUSSION

There has been an increasing need to track multiple biosensors

simultaneously for various applications. In one study, three

different cell populations expressing biosensors targeted to

distinct subcellular locations were co-cultured for simultaneous

imaging (Fujita et al., 2014). In this strategy, the multiplicity is

limited to the number of sites that can be robustly distinguished

inmicroscopic images. To our knowledge, the only generalizable

approach for multiplexing biosensor imaging is the recently re-

ported ‘‘signaling reporter islands’’ method, in which different

biosensors are clustered at different spots in cells to allow for

spatial separation of their signals (Linghu et al., 2020). However,

the method is technically demanding, requiring laborious post-

imaging sample processing and analysis to identify the

biosensor in each cluster, and is incompatible with translocation

based biosensors. The need to engineer and test individual scaf-

folds used for clustering also makes this method not easily scal-

able. More generally, one concern about expressing multiple

biosensors in the same cells is the possible interaction or inter-

ference between the biosensors. Our biosensor barcoding

method overcomes these problems by providing a simple way

to simultaneously track large numbers of existing fluorescent

biosensors, whether they are based on FRET, intensity, or trans-

location, as long as their emission falls within the CFP to YFP

(450 nm to 550 nm) spectral range.

High-throughput imaging can also be used to track large

numbers of biosensors in parallel (Chapnick et al., 2019; Kuche-

nov et al., 2016). However, we demonstrated substantial varia-

tion in biosensor activities obtained from physically segregated

cell populations. Importantly, we found that mixing cells ex-

pressing different biosensors synchronized their responses to

perturbations, as demonstrated by the coordinated activities

within the same imaging experiment but not between experi-

mental replicates. The cause of variation between experiments

is unclear in most cases but likely involves a combination of sub-

tle differences in physical, chemical, and biological factors such

as temperature, cell density, nutrient levels, or metabolic states

of cells. In addition to the synchronization of biosensor activities,

the ability of our method to identify distinct cell populations in a

mixture is hard to achieve using other approaches, and will find

broad applications in studying cell-cell interactions.

Using biosensor barcoding, we found distinct kinetic proper-

ties of multiple downstream pathways in the RTK signaling

network. In particular, the all-or-none responses of PH-AKT

and EKAR to increasing EGF stimuli add to a growing list of ev-

idence for excitability of the Ras-PI3K-ERK signaling network,

including wave-like propagation of activities, refractoriness to

repeated stimuli, and characteristic spatiotemporal responses

to disruptions in wave patterns (De Simone et al., 2021; Fukush-

ima et al., 2019; van Haastert et al., 2017; Hiratsuka et al., 2015;
ct of an inhibitor on a biosensor was calculated by integrating the activity for all

es denote biosensors corresponding to the targets of inhibitors. Positive and

ificance is represented by the color scale. See also Table S5.

ive (red) interactions were assigned when an inhibitor caused an inhibition or
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Yang et al., 2016, 2018; Zhan et al., 2020). Calcium waves have

also been reported to display features of excitable systems in

various tissues (Gelens et al., 2014). Interestingly, we found

that calcium responses were also all-or-none but with a higher

threshold compared to PI3K and ERK responses, suggesting

that calcium signaling belongs to a different excitable network.

Moreover, although extensive crosstalk exists between Ras-

PI3K-ERK signaling and other downstream effectors of RTKs,

the responses of FAK, Src, Syk, and RhoGTPase were not excit-

able but showed dose-dependent adaptation that likely involves

negative feedback mechanisms. The molecular basis of the fea-

tures displayed by different classes of effectors will be key to un-

derstanding the structure and function of the RTK signaling

network, which is the target of many clinically approved

therapeutics.

Given the ever-growing list of fluorescent biosensors, with a

recent review listing over a thousand designs for �170 cellular

targets including enzymes, voltage, ions, and metabolites

(Greenwald et al., 2018), we envision our method to find a wide

range of applications, such as reconstructing complexmolecular

networks, delineating the signaling interaction between different

cell types, and identifying molecular pathways targeted by

pharmacological agents, some examples of which are shown

in Figure 7. In addition, biosensor barcoding can facilitate the

development of new biosensors through side-by-side compari-

son of the sensitivity and dynamic range of multiple biosensor

designs. Newly developed biosensors will then further expand

the biosensor barcoding technique. Although we only demon-

strated the use of barcoding for CFP-YFP FRET- andGFP-based

biosensors, our technique can be readily adapted to other types

of fluorescent or bioluminescent biosensors with similar emis-

sion spectra.

Limitations of study
The rich kinetic data from simultaneous recording of signaling

activities will inform the formulation of more comprehensive

network models, which hold promise for predicting the re-

sponses to genetic or pharmacological perturbations with

greater accuracy. In this study, we used simultaneous tracking

of biosensors to construct mathematical models that captured

salient features of the RTK signaling responses to different con-

centrations of EGF. For each downstream effector, a model of

the receptor-effector pair was created and fitted using synchro-

nized data from both, but different effectors weremodeled sepa-

rately. Similarly, an interaction map was built from the integrated

response of biosensors to inhibitors, but a quantitative model

describing the temporal changes of all measured responses

has yet to be achieved. To take full advantage of the synchro-

nized recording, it is theoretically possible to encompass all

effectors in a comprehensive model that is constrained by the ki-

netic data. One hurdle is that as the number of interactions in-

creases, the complexity of the model rises greatly and finding

unique parameter values and model structures becomes diffi-

cult. Moreover, the models assume a linear correspondence be-

tween the biosensor signal and its target activity, which may not

have been fully validated across the measured range of some

biosensors. Nevertheless, we envision that the vast amount of

data obtained from parallel recording of large numbers of
biosensors upon various perturbations will motivate further

development of computational tools for quantitative modeling

of complex biological networks.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

p44/42 MAP kinase (phosphorylated

Erk1/2) antibody

Cell Signaling Cat# 9101, RRID:AB_331646

Phospho-FAK (Tyr397) (D20B1) Rabbit mAb

antibody

Cell Signaling Cat# 8556, RRID:AB_10891442

Rabbit Anti-GAPDH Monoclonal Antibody,

Unconjugated, Clone 14C10

Cell Signaling Cat# 2118, RRID:AB_561053

Chemicals, peptides, and recombinant proteins

Phorbol-12,13-dibutyrate (PDBu) EMD Millipore #524390

Anisomycin Sigma-Aldrich A9789

UK14304 Sigma-Aldrich U104

Yohimbine Sigma-Aldrich Y3125

Gefitinib Cayman #13166

Ionomycin Peprotech #5608212

Jasplakinolide Cayman #11705

Latrunculin B Enzo Life Sciences BML-T110-0001

PF562271 AdipoGen SYN-1064

ZSTK474 Cell Signaling #13213

Dasatinib Cayman #11498

GDC-0994 APExBIO Technology B5817

LY2584702 Selleck S7698

BAPTA-AM Selleck S7534

Y27632 Enzo Life Sciences ALX-270-333

EGF Sigma-Aldrich E9644

2-Deoxyglucose (2-DG) Sigma-Aldrich D8375

Experimental models: Cell lines

Human: A6L L. Wood Lab (JHU) N/A

Human: HEK293T C. Hung Lab (JHU) N/A

Human: HeLa M. Iijima Lab (JHU) N/A

Human: MCF7 C. Hung Lab (JHU) N/A

Human: SiHa C. Hung Lab (JHU) N/A

Human: U2OS ATCC HTB-96

Human: U87MG M. Iijima Lab (JHU) N/A

Oligonucleotides

Primer for ERKKTR (forward): CAAgtcgac

ATGAAGGGCCGAAAGCCTC

This paper N/A

Primer for ERKKTR (reverse): CAAggatc

cccGGATGGGAATTGAAAGCTGGACT

This paper N/A

Primer for p38KTR (forward): CAActcgag

ATGCGTAAGCCAGATCTCCG

This paper N/A

Primer for p38KTR (reverse): CAAggatcccc

GCTGGACTGGAGGGTCAG

This paper N/A

Primer for JNKKTR (forward): CAActcgagA

TGAGTAACCCTAAGATCCTAAAACAGAG

This paper N/A

Primer for JNKKTR (reverse): CAAggatcccc

GCTGGACTGGAGGGTCAG

This paper N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Recombinant DNA

AMPKAR Tsou et al., 2011 Addgene plasmid #35097

AMPKAR-EV Konagaya et al., 2017 Addgene plasmid #105241

cyto-ABKAR Miyamoto et al., 2015 Addgene plasmid #61510

LAMP1-ABKAR Miyamoto et al., 2015 Addgene plasmid #65068

CaNAR2 Mehta et al., 2014 Addgene plasmid #64728

ER-CaNAR2 Mehta et al., 2014 Addgene plasmid #64732

PM-CaNAR2 Mehta et al., 2014 Addgene plasmid #64730

GCaMP6S Chen et al., 2013 Addgene plasmid #40753

GCaMP6S-PM Tsai et al., 2014 Addgene plasmid #52228

EKAR Harvey et al., 2008 Addgene plasmid #18679

Nuc-EKAR Harvey et al., 2008 Addgene plasmid #18681

Lyn-EKAR This paper N/A

ERKKTR Regot et al., 2014 Addgene plasmid #59150

Cyto-FAK Seong et al., 2011 Addgene plasmid #78300

Lyn-FAK Seong et al., 2011 Addgene plasmid #78299

Src Ouyang et al., 2008 Addgene plasmid #78302

Gai1 van Unen et al., 2016 Addgene plasmid #69623

Gai2 van Unen et al., 2016 Addgene plasmid #69624

Gai3 van Unen et al., 2016 Addgene plasmid #69625

JNKAR Fosbrink et al., 2010 Addgene plasmid #61625

JNKKTR Regot et al., 2014 Addgene plasmid #59151

p38KTR Regot et al., 2014 Addgene plasmid #59152

PH-AKT Watton and

Downward, 1999

N/A

AKTAR2 Zhou et al., 2015 Addgene plasmid #64932

CKAR Violin et al., 2003 Addgene plasmid #14860

PM-CKAR Violin et al., 2003 Addgene plasmid #14862

RhoA-2G Fritz et al., 2013 Addgene plasmid #40176

Rac1-2G Fritz et al., 2015 Addgene plasmid #66110

Cdc42-2G Martin et al., 2016 Addgene plasmid #68814

LifeAct Riedl et al., 2008 Addgene plasmid #54610

Raichu-HRas Komatsu et al., 2011 N/A

Raichu-KRas Komatsu et al., 2011 N/A

Raichu-Rras Takaya et al., 2007 N/A

BKAR Kunkel et al., 2005 Addgene plasmid #14875

TORCAR Zhou et al., 2015 Addgene plasmid #64927

Prin-BRaf Terai and Matsuda, 2006 N/A

Prin-CRAF Terai and Matsuda, 2005 N/A

EV-RSK Komatsu et al., 2011 N/A

EV-ROCK Li et al., 2017 N/A

EV-S6K Komatsu et al., 2011 N/A

EV-EGFR (PicchuEV(CrkII)) Komatsu et al., 2011 N/A

Syk biosensor Xiang et al., 2011 Addgene plasmid #125729

pEGFP-N1 CloneTech N/A

EBFP2-Nucleus-7 gift from Michael Davidson Addgene plasmid #55249

H2B-TagRFP gift from Philipp Keller Addgene plasmid #99271

pmCherry-NLS Micutkova et al., 2012 Addgene #39319

mCardinal-H2B-C-10 Chu et al., 2014 Addgene plasmid #56162

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

mCardinal-N1 Chu et al., 2014 Addgene #54590

piRFP702-N1 Shcherbakova and

Verkhusha, 2013

Addgene plasmid #45456

piRFP682-N1 Shcherbakova and

Verkhusha, 2013

Addgene plasmid #45459

pNLS-iRFP670 Shcherbakova and

Verkhusha, 2013

Addgene plasmid #45466

mNeptune2-C1 gift from Michael Davidson Addgene plasmid #54836

mNeptune2.5 Chu et al., 2014 Addgene plasmid #51310

mPlum-C1 Kremers et al., 2009 Addgene plasmid #54839

RDSmCherry1 Shen et al., 2017 Addgene plasmid #89987

LSS-mKate2-C1 Piatkevich et al., 2010 Addgene plasmid #31869

mStrawberry-N1 Shaner et al., 2004 Addgene #54644

pDONR221 Invitrogen #12536017

pLex307 gift from David Root Addgene plasmid #41392

pMD2.G gift from Didier Trono Addgene plasmid #12259

psPAX2 gift from Didier Trono Addgene plasmid #12260

Software and algorithms

Zen Microscopy Software Zeiss https://www.zeiss.com/microscopy/us/

products/microscope-software/zen.html

ImageJ/Fiji Schindelin et al., 2012;

Schneider et al., 2012

https://imagej.nih.gov/ij/

Python Python Software Foundation https://www.python.org

Keras Chollet, 2018 https://keras.io/

TensorFlow Abadi et al., 2015 https://www.tensorflow.org/

Dropout Srivastava et al., 2014 N/A

RMSprop Hinton et al., 2012 N/A

Adam Kingma and Ba, 2014 N/A

Glorot Initializer Glorot and Bengio, 2010 N/A

MATLAB MathWorks https://www.mathworks.com/products/

matlab.html
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Chuan-

Hsiang Huang (chaung29@jhmi.edu).

Materials availability
Plasmids generated in this study will be deposited to Addgene (https://www.addgene.org).

Data and code availability
All data supporting the findings of the current study are available within the article and its Supplemental Information files or from the

corresponding authors upon reasonable request. The codes used in the study are provided as a ZIP file (Data S1).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

HeLa, HEK293T, MCF7, and U2OS cells, purchased from ATCC, were grown at 37�C and 5% CO2 in DMEM high glucose medium

(GIBCO, #11965092) supplemented with 10% FBS (Corning Cellgro, 35-010-CV), 1 mM sodium pyruvate (GIBCO, #11360070), and

1X nonessential amino acids (GIBCO, #11140076). Transient transfections were performed using GenJet In Vitro DNA Transfection

Reagent ver. II (SignaGen, #SL100499), GenJet In Vitro DNA Transfection Reagent for MCF7 cells (SignaGen, #SL100489-MCF7), or

GenJet In Vitro DNA Transfection Reagent for U2OS cells (SignaGen, #SL100489-OS) following the manufacturer’s instructions. For

biosensor barcoding, 2x105 cells were seeded in 12-well plates and allowed to attach overnight. Cells in each well were transfected
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with a pair of barcoding proteins and one biosensor, using a total of 0.75 mg plasmid per well. The next day, cells were harvested from

each well with Accutase (Corning, 25-058-CI) and mixed together. The resulting cell mixture was then seeded into 35 mm glass-bot-

tom dishes (Mattek, P35GC-0-14-C) at 7x105 cells per dish and incubated at 37�C and 5% CO2 overnight. The cells were starved in

serum-free, phenol red-free DMEM (GIBCO, #21063029) for 1 h before imaging experiments.

METHOD DETAILS

Plasmids
Biosensors

Plasmids for biosensors were purchased from Addgene (see Table S1). ERKKTR, p38KTR and JNKKTR genes were further cloned

into pEGFP-N1 (CloneTech) via XhoI/SaII and BamHI restriction sites using the following primers:

50-CAAgtcgacATGAAGGGCCGAAAGCCTC-30 and 50-CAAggatccccGGATGGGAATTGAAAGCTGGACT-30 for ERKKTR, 50-CAA
;ctcgagATGCGTAAGCCAGATCTCCG-30 and 50-CAAggatccccGCTGGACTGGAGGGTCAG-30 for p38KTR; 50-CAActcgagATGAGT

AACCCTAAGATCCTAAAACAGAG-30 and 50-CAAggatccccGCTGGACTGGAGGGTCAG-30 for JNKKTR.
Barcoding proteins

The original set of barcoding proteins were derived from five fluorescent proteins (designated A: TagRFP, B: mCardinal, C: iRFP702,

D: BFP, and E: mCherry) linked to targeting sequences of four subcellular locations (designated 1: nucleus, 2: plasma membrane, 3:

nuclear membrane, and 4: cytoplasm). Thus, a total of 16 barcoding proteins were generated, each represented by a letter-number

combination (e.g., B1 indicates mCardinal targeted to the nucleus). To construct barcoding proteins, the following fragments were

joined together by overlapping PCR: 1) fluorescent protein sequence; 2) spacer (TCTGGCAGCGGAGGCTCTGGAGGC); and 3) tar-

geting sequence. The following plasmids were used as templates for the fluorescent proteins: H2B-TagRFP (Addgene #99271, a gift

from Philipp Keller), mCardinal-H2B-C-10 (Addgene #56162) (Chu et al., 2014), piRFP702-N1 (Addgene #45456) (Shcherbakova and

Verkhusha, 2013), EBFP2-Nucleus-7 (Addgene #55249, a gift from Michael Davidson), and pmCherry-NLS (Addgene #39319) (Mi-

cutkova et al., 2012). The targeting sequences for the nucleus, plasma membrane, nuclear membrane, and cytoplasm were derived

from the NLS of SV40, CAAX of K-Ras, lamin B1, and the NES of MAPKK, respectively. The sequence ATGGGATGTATAAAATC

AAAAGGGAAAGACAGC, derived from the Lyn kinase, was used as an alternative plasma membrane targeting motif in some cells.

Additional fluorophores used for further expanding the barcoding proteins are shown in Table S4.

Chemical reagents
Stocks of 200 mM phorbol-12,13-dibutyrate (PDBu, EMD Millipore, #524390), 1 mg/mL anisomycin (Sigma-Aldrich, A9789), 10 mM

UK14304 (Sigma-Aldrich, U104), 10 mM yohimbine (Sigma-Aldrich, Y3125), 1 mM gefitinib (Cayman, #13166), 1 mM ionomycin (Pe-

protech, #5608212), 2 mM jasplakinolide (Cayman, #11705), 25 mM latrunculin B (Enzo Life Sciences, BML-T110-0001), 10 mM

PF562271 (AdipoGen, SYN-1064), 10 mM ZSTK474 (Cell Signaling, #13213), 10 mM dasatinib (Cayman, #11498), 10 mM GDC-

0994 (APExBIO Technology, B5817), 1 mM LY2584702 (Selleck, S7698), 10 mM BAPTA-AM (Selleck, S7534) were prepared by dis-

solving the chemicals in DMSO; 10 mM Y27632 (Enzo Life Sciences, #ALX-270-333) in water. Stocks were diluted to the indicated

final concentrations in the culturemedium. The EGF stock solution was prepared by dissolving EGF (Sigma-Aldrich, E9644) in 10mM

acetic acid to a final concentration of 1 mg/ml. All drug stocks were stored at �20�C. 2-Deoxyglucose (2-DG, MilliporeSigma,

#D8375) was dissolved in culture medium to 100 mM and used immediately.

Lentivirus production and transduction
Lentiviral plasmids were constructed using the Gateway Recombination Cloning Technology (Figure S3). Entry vectors were gener-

ated by integrating targeting sequence into pDONR221 (Invitrogen, #12536017) with Gateway BP Clonase ll EnzymeMix (Invitrogen,

#11789100). To generate fluorescent protein sequence-inserted destination vectors, the upstream sequence of the attR1 sequence

of pLex307 (Addgene, #41392) was first modified from 50-GCTAGCATCGATTGATCA-30 to 50-GCTAGCTTAATTAAGGGCATAT-

GATCGATGGATCA-30 to insert PacI and NheI restriction enzyme sites and to remove an in-frame stop codon in the BclI restriction

enzyme site. The fluorescent protein sequence was subsequently cloned into the vector via PacI and NheI sites. The final expression

vectors were generated by transferring the targeting sequence from the entry vector to the destination vector with Gateway LR Clo-

nase ll Enzyme Mix (Invitrogen, #11791100).

For lentivirus production, 4x106 HEK293T were seeded in a 10-cm dish with DMEM supplemented with 10% FBS and allowed to

attach overnight. Cells were transfected with 1.25 mg of pMD2.G (Addgene, #12259), 3.75 mg of psPAX2 (Addgene, #12260), and 5 mg

of lentiviral plasmids using GenJet In Vitro DNA Transfection Reagent ver. II, and the cell culture medium was replaced with fresh

medium 5 h after transfection. Lentiviral supernatants were harvested 24 h after transfection and filtered through a 0.45 mm PVDF

filter (Millipore, #SLHVM33RS).

For lentiviral transduction of U87MG, SiHa, and A6L, cells were seeded into an 8-well chamber (2.5 x104 cells) with DMEM sup-

plemented with 10% FBS and allowed to attach overnight. Cells were transduced with lentivirus in medium containing 8 mg/ml

polybrene (Millipore, #TR-1003-G). Cells were incubated at 37�C and 5% CO2 for 48 h before imaging.
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Microscopy
Imaging experiments were carried out on a Zeiss LSM 780 or 880 single-point laser-scanning microscope (Zeiss AxioObserver with

780 or 880-Quasar confocal module; 34-channel spectral, high-sensitivity gallium arsenide phosphide (GaAsP) detectors) with a

motorized stage for capturing multiple viewfields controlled by Zen software as previously described (Huang et al., 2013). Live-

cell imaging was carried out in a temperature/humidity/CO2-regulated chamber. To image barcodes, spectral images for red-far

red barcoding proteins were acquired between 560 and 695 nm at 8.9 nm windows using Lambda Mode under 561 nm and

633 nm illumination. Reference spectra for TagRFP, mCherry, mCardinal, and iRFP702 were acquired by imaging HeLa cells ex-

pressing H2B-TagRFP under 561 nm excitation, H2B-mCherry and H2B-mCardinal under both 561 and 633 nm excitation, and

H2B-iRFP702 under 633 nm excitation. Since the BFP emission spectrum is well separated from those of the red-far red fluorophores

(Figure 1A), no unmixing is required for BFP images, which were therefore acquired in the channel mode. To avoid bleedthrough from

CFP and YFP used in FRET-based biosensors, we collected BFP emission in the 370-430 nm range under 405 nm excitation. To im-

age biosensors, CFP (458-499 nm) and YFP (508-543 nm) emissions under 458 nm illumination were obtained. This setting, while

optimized for detecting CFP-YFP FRET biosensors, also captures GFP-based biosensors due to the overlapping spectra of GFP

and YFP. Using a single imaging setting for both types of biosensors is convenient, and it reduces cell exposure to illumination, there-

fore minimizing phototoxicity. Time-lapse images of the biosensors were taken at a rate of one frame every three minutes unless

specified. Cells in 2 mL DMEM (GIBCO #21063029) were stimulated by adding signaling activators or inhibitors (200 mL for 2DG

and 20 mL for all other reagents) at the indicated time points.

Image analysis
Analysis of barcodes by linear unmixing of spectral images

Using the linear unmixing function in ZEN Software, spectral images of cells expressing pairs of barcoding proteins acquired under

561 nm illumination were unmixed using TagRFP andmCardinal reference spectra, whereas spectral images acquired under 633 mm

illumination were unmixedwithmCardinal and iRFP702 spectra. The unmixed images for TagRFP,mCardinal, and iRFP702 aswell as

images of BFP were then combined using NIH ImageJ and Fiji (Schindelin et al., 2012; Schneider et al., 2012) and visually inspected

for the expression and localization of each fluorophore. In the majority of cases (> 90%) the two expressed barcoding proteins could

be unambiguously identified (Figure S1). Cells with ambiguous barcodes were excluded from the analysis of biosensors. For

simplicity, barcodes were represented by four numbers that denoted the expression and location of TagRFP, mCardinal,

iRFP702, and BFP (0: no expression; 1: nucleus; 2: plasma membrane, 3; nuclear membrane, and 4: cytoplasm; see Figure 1C).

For the second barcoding scheme in which one of the three red FPs (mCherry, mCardinal, or iRFP702) was combined with BFP (Fig-

ure 3), spectral images acquired under 633 nm excitation were unmixed using the reference spectra of mCherry, mCardinal, and

iRFP702 followed by processing in NIH ImageJ and Fiji as described above.

Analysis of biosensors in mixed populations of barcoded cells

Images of biosensors were processed and analyzed with NIH ImageJ and Fiji (Schindelin et al., 2012; Schneider et al., 2012). The

barcode of each cell, determined as described above, allows for identification of the biosensor expressed by the cell. To measure

the activities of FRET-based biosensors, the mean intensity of YFP over the entire cell was divided by that of CFP for each frame.

For ERKKTR, p38KTR and JNKKTR, the mean intensity of YFP in the nucleus was divided by that of a cytoplasmic region. For

PH-AKT, the mean intensity of YFP in an intracellular region was measured. For GCaMP6S and GCaMP6S-PM, the mean intensity

of YFP over the entire cell was measured. The activities for every frame were then normalized to the average of those from the pres-

timulus frames. Normalized activities from cells with the same barcodewere then pooled together to calculate themean and standard

deviation (SD) for the corresponding biosensor.

Barcode image classification by deep learning models
Image datasets

To create training and testing sets for deep learning models, we manually segmented processed barcode images (see Image Analysis

above)comprising fourchannels (BFP,mCherry,mCardinal, and iRFP702), twoofwhichcontained ‘‘real’’ signalsofanFPtargeted toone

of four distinct subcellular locations (the nucleus, plasmamembrane, nuclearmembrane, or cytosol), in ImageJ (Schindelin et al., 2012).

Lowquality or ambiguous imageswerediscarded. Images fromchannels thatdidnot correspond toabarcodingproteinwere included in

the ‘‘none’’ class, thus generating a total of five image classes. SincemCherry, mCardinal, and iRFP702 imageswere obtained by linear

unmixing of spectral images (see above), they sometimes contained noise and bleedthrough signals from other channels. We therefore

performed a ‘‘mutual exclusion’’ correction, wherebywe compared themCherry, mCardinal, and iRFP702 images pixelwise and set the

pixels from the two lower intensity channels to0. This is becauseafter unmixing, the channelwith the real signal generally had the highest

intensity. We used a script created in Python (Python Software Foundation. Python Language Reference, version 3.7, https://www.

python.org) to carry out ‘‘mutual exclusion’’ correction followed by rescaling the pixel values to be between 0 and 1 and resizing to

150 pixels by 150 pixels. The final dataset contained 8,946 images (2,000 nucleus, 1,304 plasma membrane, 819 nuclear membrane,

1,724 cytosol, and 3,099 none), which were split into training (6,516 images), validation (1,630 images), and test sets (800 images).

Deep Convolutional Neural Network

We trained three deep convolutional neural networkmodels using Keras (Chollet, 2018) with the TensorFlow (Abadi et al., 2015) back-

end: one model to classify BFP images and twomodels to classify red FP images with a known BFP reference marker. The model for
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BFP image classification had six layers, including four convolutional layers and two fully connected layers. We used 32, 64, 128, and

128 for the number of units in the convolutional layers and 512 and 3 in the fully connected layers. The two networks for red FP image

classification had seven layers, including four convolutional layers and three fully connected layers. We used 32, 64, 128, and 128 for

the number of units in the convolutional layers and 512, 128 and 5 in the fully connected layers. We used 33 3 convolutional filters for

every convolutional layer and 23 2 max pooling with step size 2 after every convolutional layer. For the activation function, we used

rectified linear units for every layer except for the last layer, in which we used Softmax for the 3-class and 5-class classifiers. We

included a Dropout (with a rate of 0.5) between the last convolutional layer and fully connected layer to prevent overfitting (Srivastava

et al., 2014). We used the RMSprop (Hinton et al., 2012) or Adam (Kingma and Ba, 2014) (initial learning_rate = 0.001, beta_1 = 0.9,

beta_2 = 0.999) optimizer with a batch of 32 training images to minimize the cross-entropy loss. The weights were initialized with the

default Glorot initializer provided by Keras (Glorot and Bengio, 2010). The maximum output of the softmax function was used for

thresholding during the barcode identification analysis.

We used the preprocessed images as described above to train the BFP models. For the two red FP classification models, images

from the red FP channels were combined with either nuclear or plasma membrane BFP images to form a two-channel image resized

to 150 pixels x 150 pixels. Before inputting the images into the neural network, we augmented the training images (using ImageGen-

erator) by randomly shifting, shearing, horizontal/vertical flipping, or rotating the images. The models were trained for �100 epochs,

selected according to validation loss, and subsequently tested on the test data.

Fitting responses to kinetic models
Suppose that yði;jÞðtkÞ denotes the normalized biosensor level for biosensor i, cell j at time tk . These time-dependent traces were fit to

a model:

byðtÞ = (
a1; x < t0
a1 � a2

�
1� e�a3ðt�t0Þ�e�a4ðt�t0Þ; xRt0
in two different ways. In the first, one set of parameters a1,...,a4 a
nd t0 was selected to minimize the sum of all the (squared) differ-

ences between the byðtkÞ and all the traces; i.e.

min
a1 ;.;a4 ;t0

X
j

X
k

�
yði;jÞðtkÞ � byðtkÞ�2
This was done for ten individual experiments. Furthermore, for ea
ch specific cell-biosensor pair, a set of coefficients was obtained

that minimized

min
a1 ;.;a4 ;t0

X
k

�
yði;jÞðtkÞ � byðtkÞ�2
Minimization was carried out using nonlinear least-squares optim
ization in MATLAB (MathWorks, Natick, MA) using the ‘‘fit’’ com-

mand of the Curve Fitting Toolbox (version 2020b). Sample values are given in Figure S4.

Simulation of RTK network responses to EGF stimulation
The experimental mean data from Figure 6D were fitted to one of three models, according to the respective classes. The first, a re-

ceptor/ligand binding model described by R+ L ! C is given by the differential equation

dC

dt
= � k1C+

k2L

k3 + L
; tRt0 (1)
The four parameters, k1,k2,k3 and t0, were obtained by fitting the e
xperimental data to the simulation using a custom-based script in

MATLAB that relies on fminsearch for the nonlinear optimization and ode45 to solve for the differential equation. Here, L is the stim-

ulus strength (0.1, 1, 10 and 100 ng/ml) and is the normalized activity of the biosensor (minus one, so that the prestimulus level is zero).

This model was used to fit the experimental data for PicchuEV.

The secondmodel represents the combined activity of a receptor model (as in Equation 1) and a negative feedback loop as follows:

dC

dt
= � k1C+

k2L

k3 + L
; tRt0
dX

dt
= � k8XY

k9 +X
+
k6C k4 � Xð Þ
k7 + k4 � Xð Þ

dY

dt
= � k12Y

k13 +Y
+
k10X k5 � Yð Þ
k11 + k5 � Yð Þ
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In this model, the two species, X and Y, exist in two states, and the transitions between the two states is mediated by Michaelis-

Menten kinetics. The various parameters, k1,...,k13 and t0, were obtained as in the first model, fitting the level of X to the biosensor

data. This model was used to describe Syk, Lyn-FAK, RhoA2G, SRC, EVROCK and EV-S6K.

The thirdmodel represents the combined activity of a receptor model (as in Equation 1) and an activator-inhibitor excitable network

(Xiong et al., 2010):

dC

dt
= � k1C+

k2L

k3 + L
; tRt0

dU

dt
= � ðk4 + k5VÞU+

k6U
2

k27 +U2
+ k4C

dV

dt
= � k9V + k10U
The various parameters, k1,...,k10 and t0, were obtained as in the
 previous model, fitting the level of U to the biosensor data. This

model was used to fit the data for GCaMP6S, EKAR and PH-AKT.

The various parameter values are given in the following table. Note that, except for t0, which is given in minutes, all other param-

eters are non-dimensional.
Biosensor t0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13

PicchuEV 8.338 0.368 0.134 2.251

GCaMP6S 4.916 0.484 0.114 6.043 0.461 2.306 2.167 0.8560 1.3493 0.0960 0.1251

EKAR 7.582 0.741 0.178 0.361 1.503 1.035 0.130 0.0341 0.0799 2.24 3 10�5 0.2741

PH-AKT 3.497 0.973 0.108 0.335 0.691 0.456 0.40 0.1314 0.2136 1.25 3 10�12 0.6303

EV-ROCK 5.609 2.007 0.190 3.550 0.110 1.566 0.628 0.070 0.040 1.42 3 10�4 1.440 1.83 3 10�9 0.071 0.079

EV-S6K 7.701 0.165 0.137 1.939 0.675 0.210 0.046 0.592 0.877 0.367 0.387 0.204 0.109 1.370

Lyn-FAK 5.967 4.817 0.647 18.29 0.241 0.054 6.171 2.300 1.891 1.06 3 10�6 4.235 7.158 7.946 3 10�3 0.159

RhoA2G 5.362 0.476 0.196 3.961 0.221 0.488 1.203 1.657 0.487 0.547 0.978 8.44 3 10�4 0.067 0.044

SRC 5.403 0.652 0.175 3.279 0.582 0.450 1.208 0.697 0.405 3.38 3 10�7 0.260 7.01 3 10�4 0.064 0.135

Syk 6.565 0.826 0.112 1.964 0.854 0.070 1.083 0.500 1.170 2.49 3 10�5 0.271 5.20 3 10�4 0.045 0.074
Hill equation fitting
To perform fitting of theHill equation, we took the peak values of the responses of each biosensor at four different concentrations (0.1,

1, 10, 100 ng/ml) of EGF stimulation, scaled it to the maximum response, and fitted it to

y = 1
��

1 + ðK=xÞn�

where K is the concentration of half responses, x is the measure
ment, and n is the Hill coefficient. The fitting is performed with the

curve_fit tool in the Python library ‘‘scipy.optimize’’ with nonlinear least-squares regression.

QUANTIFICATION AND STATISTICAL ANALYSIS

Python andMicrosoft Excel were used for statistical analysis and generating graphs. Specifically, Python Seaborn packagewas used

for plotting Figures 5E and 5G and Python matplotlib.pyplot package for Figures 6C–6E. For imaging experiments involving mixed

barcoded cells, at least three independent experiments were carried out on different days, and statistics were derived by aggregating

the number of samples noted in each figure legend across independent experiments. Mean ± SD was reported as indicated in the

figure legends. Statistical significance and p-values for comparing the responses of single andmixed cell populations (Table S2) were

determined using two-tailed unpaired Welch’s t test for comparison between the two groups.
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Supplemental figures

Figure S1. Images of barcoded cells, related to Figure 1

(A-B) Examples of HeLa cells expressing pairs of red/far-red barcoding proteins (A) and HeLa cells expressing BFP and one of the three red/far-red FPs (B).

Spectral images of cells expressing pairs of barcoding proteins targeted to different subcellular locations were unmixed to obtain three images corresponding to

TagRFP, mCardinal, and iRFP702, respectively. BFPwas imaged separately. The numbers on top of every set of images denote barcodes as defined in Figure 1C

legend. 20 out of 72 possible barcodes are shown. Scale bars: 10 mm.

(C-D) Absence of cross-transfection inmixed barcoded cells. (C) Representative images of HeLa cells transfectedwith BFP targeted to the nucleus (D1) or plasma

membrane (D2)mixedwith cells transfectedwith one of the red FPs (A: TagRFP; B:mCardinal; C: iRFP702; E:mCherry) localized to different locations (1: nucleus;

2: cell membrane; 3: nuclear membrane; 4: cytosol). (D) Collage of 12 viewing fields from a single microscopy experiment showing HeLa cells transfected with

plasma membrane-targeted BFP (cyan) mixed with cells transfected with nuclear TagRFP (red). Scale bars: 50 mm.
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Figure S2. Barcoding U2OS cells, related to Figure 4

(A) Representative images of U2OS cells transfected with BFP targeted to the nucleus (D1) or plasma membrane (D2) along with mCherry targeted to one of the

four subcellular locations (E1: nucleus; E2: plasma membrane; E3: nuclear membrane; E4: cytosol). Lyn sequence was used for plasma membrane targeting in

U2OS cells. Scale bars: 10 mm.

(B) 3D reconstruction from z-stacks of a U2OS cell with broad membrane signal of Lyn-CFP showing the ‘‘cowboy hat’’ morphology (left). A cell with sharply

localized membrane signal (right) is shown for comparison. Scale bars: 10 mm.

(C) Confusion matrix (%) of U2OS cells barcoded with nuclear or cytoplasmic BFP plus mCherry targeted to one of the four subcellular locations using the deep

learning models trained on HeLa cells (original models, left) and new models trained on U2OS cell images (right).
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Figure S3. Lentiviral vectors for barcoding, related to STAR Methods

(A) Schematic of lentiviral vector construction.

(B-D) Representative images of U87MG (B), SiHa (C), and A6L (D) cells co-transduced with lentiviral vectors expressing BFP targeted to the nucleus (D1) or

plasma membrane (D2) along with mCardinal targeted to one of the four subcellular locations (B1: nucleus; B2: plasma membrane; B3: nuclear membrane; B4:

cytosol). Scale bars: 10 mm.
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Figure S4. Fitting responses to kinetic models, related to Figure 5 and STAR Methods

(A) General form of the kinetic model used to fit the biosensor responses to EGF stimulation.

(B, C) Best-fit curves (red) and observed responses (open circles) of individual cells expressing EKAR (B) and nucEKAR (C) from E1 of Figure 4A.

(D, E) Statistics of the parameters and graphs showing all individual traces (thin black), average data (bold black) ± SD (blue), and data fit (red) for EKAR (D) and

nucEKAR (E). See STAR Methods.
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Figure S5. Response to different patterns of stimulation and cytoskeletal inhibitors, related to Figure 6

(A) Responses to transient and continued EGF stimulation. (Top) Responses of biosensors obtained from mixed barcoded cells treated with 100 ng/ml EGF at

6 min and 1 mM gefitinib (EGFRi) at 12 min. (Bottom) Responses to EGF without EGFRi (adapted from Figure 6C) are shown for comparison. The activities are

normalized to the pre-stimulation level. Values represent mean (solid lines) ± SD (dashed lines).

(B) Responses to low and high EGF doses in individual cells. Barcoded HeLa cells expressing different biosensors were stimulated with 1, 10 and 100 ng/ml EGF

at 6, 21, and 34min, respectively. Traces of normalized activity from five representative cells expressing indicated biosensors are shown for each biosensor. Red

arrows indicate the timing of the three stimuli.

(C) Mixed barcoded cells were pretreated with 5 mM jasplakinolide for 30 min, and then stimulated with 10 ng/ml EGF at the indicated time point.

(D) Mixed barcoded cells were pretreated with 5 mM latrunculin B for 30min, and then stimulated with 100 ng/ml EGF at the indicated time point. In (C) and (D), the

signals are normalized to the pre-stimulation level, and values represent mean (solid lines) ± SD (dashed lines).
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Figure S6. Network topology of different classes of activities in RTK signaling network, related to Figure 6

(A-C) Computer simulation (solid lines) of the responses to different doses of stimuli based on a simple binding model for class 1 (A), negative feedback loop for

class 2 (B), and excitable network for class 3 (C) biosensors. Schematics of the models are shown, with the variable plotted in the graphs in red. The models were

fitted to the mean responses of HeLa cells to different concentrations of EGF (data points represented by dots). See STAR Methods for details of model fitting.
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Figure S7. Effects of KRAS mutants, related to Figure 7

(A) EKAR activities (mean ± SD of YFP/CFP ratio) of mixture of four cell populations: 1) HeLa (Ctrl); 2) HeLa:KRAS(WT), 3) HeLa:KRAS(G12V), and 4) He-

La:KRAS(S17N) stimulated with 100 ng/ml EGF at 6 min.

(B,C) Responses of HeLa:KRAS(G12V) cells (B), and mixture of HeLa (Ctrl) and HeLa:KRAS(G12V) cells (C) to 100 ng/ml EGF added at 6 min. In each set of

experiments, traces of the same color are derived from the same experiment (e.g., all the green traces from Ctrl and G12V in (C) are derived from the same cell

mixture). The values represent the mean normalized to pre-stimulation levels.

(D) Immunoblots of phospho-FAK, phospho-ERK, andGAPDHusing samples fromcontrol andKRAS(G12V) cells before and 15min after stimulationwith 100 ng/ml

EGF. Error bars: SD. **p < 0.05 by Student’s t test (n = 3).
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