
Chapter 13 

Reconstructing Signaling Networks Using Biosensor 
Barcoding 

Suyang Wang, Wei-Yu Chi, Gabriel Au, Cheng-Chieh Huang, 
Jr-Ming Yang, and Chuan-Hsiang Huang 

Abstract 

Understanding how signaling networks are regulated offers valuable insights into how cells and organisms 
react to internal and external stimuli and is crucial for developing novel strategies to treat diseases. To 
achieve this, it is necessary to delineate the intricate interactions between the nodes in the network, which 
can be accomplished by measuring the activities of individual nodes under perturbation conditions. To 
facilitate this, we have recently developed a biosensor barcoding technique that enables massively multi-
plexed tracking of numerous signaling activities in live cells using genetically encoded fluorescent biosen-
sors. In this chapter, we detail how we employed this method to reconstruct the EGFR signaling network by 
systematically monitoring the activities of individual nodes under perturbations. 

Key words Genetically encoded fluorescent biosensors, Live cell imaging, Signaling network, Deep 
learning, Receptor tyrosine kinases (RTKs), Epidermal growth factor receptor (EGFR), Multiplexing, 
Small-molecule inhibitors 

1 Introduction 

Numerous biochemical activities are responsible for coordinating 
cellular functions in both space and time. To track these activities in 
live cells, many genetically encoded fluorescent biosensors have 
been developed utilizing fluorescent proteins (FPs). These biosen-
sors allow for the monitoring of various cellular activities, such as 
signaling and metabolic processes [1]. However, the limited spec-
tral space and broad emission spectra of FPs have prevented the 
imaging of more than a few biosensors in a single experiment, 
despite attempts to increase multiplexity. One such attempt 
includes expanding the color spectrum of biosensors or targeting 
them to different intracellular sites [2]. However, these strategies
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have limited success in expanding the number of activities to be 
monitored, as no more than five to six different biosensors can be 
imaged at the same time.
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Fig. 1 Overview of network reconstruction using biosensor barcoding (a) Emission spectrums of barcoding 
proteins and biosensors. Shaded regions indicate the range of collection. (b) Generation of barcodes from 
combinations of two barcoding proteins: the first based on a red FP and the second BFP. (c) Cells are mixed for 
simultaneous imaging of barcodes and biosensors. (d) The responses to biosensors to inhibitors are obtained 
from time-lapse images of biosensors, the identity of which can be determined by the barcodes expressed in 
the same cells. (e) The interactions between the nodes can be deduced from the responses to inhibitors 

To overcome the limitation of imaging only a few biosensors in 
a single experiment, we recently introduced a method for massively 
multiplexed biosensor imaging [3, 4]. Our approach, known as 
“biosensor barcoding,” involves labeling cells expressing different 
biosensors with barcodes consisting of a pair of barcoding pro-
teins—blue or red fluorescent proteins that are targeted to distinct 
subcellular locations (Fig. 1a, b). Unlike the commonly used cyan, 
green, or yellow FPs in biosensors, the emission spectra of the 
barcoding proteins are easily separable. Following cell mixing, 
spectral images of the barcodes are obtained at the beginning of



the experiment, followed by time-lapse imaging of biosensors 
(Fig. 1c) using a fluorescent microscope equipped with a spectral 
detector. The barcode present in each cell allows for the identifica-
tion of the biosensor expressed, which can be achieved using 
machine learning models. Subsequently, the signals of cells expres-
sing the same biosensor can be combined for further analysis 
(Fig. 1d). Information from the responses to perturbations can 
reveal the regulatory structure of signaling networks (Fig. 1e). 
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Besides improving the efficiency of data acquisition, the bio-
sensor barcoding method has other benefits. Firstly, cells expressing 
various biosensors exhibit synchronized activities, which simplifies 
the comparison of different biosensors. Secondly, the capability to 
label distinct cell populations in the same mixture enables differen-
tiation between cell-autonomous and nonautonomous effects [3]. 

By enabling massively parallel imaging of biosensors, our 
method provides a powerful tool for reconstructing signaling net-
works. Specifically, we can use the method to track the activities of 
individual nodes in the signaling network and observe their 
responses when the nodes are individually blocked using small 
molecule inhibitors. In this chapter, we demonstrate this strategy 
using the EGFR signaling network as an example (Fig. 2), but the 
strategy can be easily applied to the study of other signaling 
networks. 

Fig. 2 Biosensors and inhibitors for the EGFR-signaling network. The biosensors used in this chapter are 
shown in blue and inhibitors in red
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2 Materials 

2.1 Cell Culture and 

Transfection 

1. HeLa cells are purchased from ATCC (CCL2). 

2. Culture medium: DMEM, with L-glutamine and high glucose, 
supplemented with 10% FBS, 1-mM sodium pyruvate and 1X 
MEM nonessential amino acids. 

3. Imaging medium: DMEM, with L-glutamine and high glu-
cose, HEPES, no phenol red, supplemented with 10% FBS, 
1-mM sodium pyruvate and 1X MEM nonessential amino 
acids. 

4. GenJet™ In Vitro DNA Transfection Reagent (Ver. II). 

2.2 Plasmids Barcoding proteins used in this chapter include the following (see 
Table 1 for an explanation of the barcoding protein nomenclature): 

1. D1: BFP-NLS, Addgene #184458 

2. D2: BFP-CAAX, Addgene #184459 

3. B1: mCardinal-NLS, Addgene #184450 

4. B3: mCardinal-LaminB1, Addgene #184452 

Table 1 
Biosensors and barcodes 

Biosensor name Target Barcoding proteins Barcode 

PicchuEV EGFR B4D1 0401 

Src biosensor Src E4D1 4001 

Lyn-FAK FAK E3D1 3001 

EV-ROCK ROCK C1D2 0012 

GCaMP6S Calcium C2D1 0021 

PH-AKT PI3K B1D1 0101 

EKAR ERK B3D2 0302 

EV-S6K S6K E2D1 2001 

Syk biosensor Syk E2D2 2002 

RhoA2G RhoA C4D2 0042 

The biosensor and a pair of barcoding proteins are transfected into cells separately. Each 

barcode consists of a BFP (code: D) targeted to either the nuclear or plasma membrane, 
and one of the three red FPs: mCherry (E), mCardinal (B),or iRFP702 (C) targeted to 

one of four subcellular locations: the nucleus (1), plasma membrane (2), nuclear mem-

brane (3), or cytosol (4). The barcode digits, from left to right, indicate the subcellular 

location of the targeted FPs: mCherry, mCardinal, iRFP702, and BFP, with 0 denoting 
not expressed. For instance, barcoding protein combination E2D1 represents mCherry 

at location 2 (plasma membrane) and BFP at location 1 (nucleus), with the 

corresponding barcode 3001
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5. B4: mCardinal-NES, Addgene #184453 

6. C1: iRFP702-NLS, Addgene #184454 

7. C2: iRFP702-CAAX, Addgene #184455 

8. C4: iRFP702-NES, Addgene #184457 

9. E2: mCherry-CAAX, Addgene #186347 

10. E3: mCherry-LaminB1, Addgene #186348 

11. E4: mCherry-NES, Addgene #186349 

Biosensors: 

1. PicchuEV [5] 

2. RhoA2G, Addgene #40176 [6] 

3. Lyn-FAK biosensor, Addgene #78299 [7] 

4. Cytosolic Syk Biosensor, Addgene #125729 [8] 

5. PH-AKT-GFP, Addgene #51465 [9] 

6. Cytoplasmic EKAR (Cerulean-Venus), Addgene #18679 [10] 

7. GCaMP6s, Addgene #40753 [11] 

8. EV-ROCK [12] 

9. Src biosensor, Addgene #78302 [13] 

10. EV-S6K [5] 

2.3 Chemicals 1. Gefitinib: EGFR inhibitor 

2. PF562271: FAK inhibitor 

3. ZSTK474: PI3K inhibitor 

4. GDC-0994: ERK inhibitor 

5. BAPTA: Calcium chelator 

6. Y27632: ROCK inhibitor 

7. Dasatinib: Src inhibitor 

8. LY2584702: S6K inhibitor 

See also Table 2. 

2.4 Imaging 

Equipment 

1. Zeiss AxioObserver with 780-Quasar confocal module, which 
is equipped with a 34-channel high-sensitivity gallium-arsenide 
phosphide (GaAsP) spectral detector controlled by the Zen 
software. 

2. Three laser excitation wavelengths are used: 405 nm for BFP, 
458 nm for CFP/GFP/YFP, and 633 nm for the red FPs. The 
emission signals of BFP, CFP, YFP/GFP, and red FPs are 
collected in the ranges of 371–430 nm, 458–499 nm, 
508–543 nm, and 561–695 nm, respectively (see Note 1).



Drug name Target Source Identifier
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Table 2 
Inhibitors 

Stock concentration 
(mM) 

Working concentration 
(μM) 

Gefitinib EGFR 1 1 Cayman 13166 

PF562271 FAK 10 1 AdipoGen SYN-1064 

ZSTK474 PI3K 10 1 Cell Signaling 13213 

GDC-0994 ERK 10 1 APExBIO 
Technology 

B5817 

BAPTA-
AM 

Calcium 10 10 Selleck S7534 

Y27632 ROCK 10 10 Enzo Life 
Sciences 

ALX-270-
333 

Dasatinib Src 10 1 Cayman 11498 

LY2584702 S6K 1 1 Selleck S7698 

3. An environmental control chamber maintains the cells at 37 �C 
during time-lapse imaging. The microscope is also equipped 
with a motorized stage for multi-position image acquisition, 
and a Definite Focus module for auto-focusing. 

2.5 Image Analysis 

Software 

1. ImageJ/Fiji (https://imagej.net/software/fiji/) [14, 15] 

2. Python 3 https://www.python.org 

3. Keras https://keras.io/ [16] 

4. TensorFlow https://www.tensorflow.org/ [17] 

5. Scripts and deep learning models for analysis can be 
downloaded from: https://github.com/BearHuangLab/Bio 
sensor-barcoding 

3 Methods 

3.1 Transfection of 

HeLa Cells with 

Biosensors and 

Barcodes 

1. Day 1, seed 2 � 105 HeLa cells to ten wells in a 12-well tissue 
culture plate along with 2 mL of DMEM complete medium. 
Incubate the cells overnight at 37 �C, 5% CO2 (see Note 2). 

2. Day 2, replace the medium in each well with 0.75 mL of fresh 
DMEM complete medium 30 min prior to transfection. 

3. For each well, prepare one tube of diluted DNA solution and 
one with the GenJet™ transfection reagent. First, dilute 
0.75 μg of DNA in 38 μL of serum-free DMEM. In each 
transfection, the DNA mixture contains two barcoding pro-
teins and one biosensor (Table 1). Start with a mass ratio of 1:

https://imagej.net/software/fiji/
https://www.python.org
https://keras.io/
https://www.tensorflow.org/
https://github.com/BearHuangLab/Biosensor-barcoding
https://github.com/BearHuangLab/Biosensor-barcoding
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1:1 and adjust the ratio if necessary to achieve optimal fluores-
cence signal (see Note 3). Next for the transfection reagent, 
add 2.25 μL GenJet™ Transfection Reagent in 38 μL of serum-
free DMEM. Mix by vortexing and spin down briefly. Immedi-
ately add the diluted transfection reagent to the diluted DNA 
solution, and pipette up and down a few times to mix. Leave 
the mixture at room temperature for 15 min. 

4. Add the DNA-GenJet™ complex dropwise to cells in the 
12-well plate. Incubate cells at 37 �C, 5% CO2 overnight. 

5. Day 3, collect the cells by removing the medium containing 
DNA-GenJet™ complex. Rinse each well with DPBS, aspirate, 
and detach the cells with Accutase. Mix cells from all ten wells 
together and resuspend with Imaging Medium. Seed 5 � 105 

cells in 35-mm glass-bottom dishes, and incubate overnight at 
37 �C, 5% CO2. 

3.2 Imaging 

Barcodes with Zeiss 

LSM780-FCS Laser 

Scanning Confocal 

Microscope 

1. Before imaging, replace the medium with fresh Imaging 
Medium for each dish. 

2. Turn on the microscope, halogen lamp, and argon laser. Switch 
the objective to the 40� oil lens and add a small drop of 
immersion oil. Place the glass-bottom dish on the stage. 
Remove the culture dish lid for accessible drug administration 
during time-lapse imaging experiments. Secure the dish with 
stage clips. 

3. Open the Zen software on the computer and turn on the stage 
incubator to 37 �C. Select the “Locate” setting on the software 
and switch on “Transmitted light.” Locate cells by adjusting 
microscope focus. 

4. Switch to “Acquisition” and select the “Lambda Mode” tab 
under “Light Path.” For the far red barcodes, select the 
633-nm laser as the excitation source and set the pinhole size 
to 30.2. Set range to 561–695 nm with resolution of 8.9 nm 
(see Note 4). 

5. To capture images, choose 30 positions containing at least six 
to ten cells with strong fluorescent signals in each view field. 
Save the barcode images as [Experiment ID]_633Ex.lsm (see 
Note 5). 

6. To differentiate the red barcodes, perform Linear Unmixing 
using the reference spectra to generate three separate images 
(mCherry, mCardinal and iRFP702) for each position (the 
reference spectra can be obtained using cells expressing indi-
vidual FPs; see [4] for details). Save the file as [Experiment ID] 
_633Ex_Linear unmixing.lsm.
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7. For the BFP barcode, acquire images through “Channel 
Mode.” Select the 405 nm laser as the excitation source and 
set range to 371–430 nm with pinhole size of 30.2. Save the file 
as [Experiment ID] 405Ex.lsm. 

3.3 Imaging Cells 

Treated with Inhibitors 

1. After the barcode images are captured, start time-lapse imaging 
for biosensor responses. For drug inhibition studies, time-lapse 
images are taken for each position every 3 min for ten frames in 
total. 

2. On the Zen software, click the “Channel Mode” tab under 
“Light Path” selections. To capture FRET and KTR biosen-
sors, select the spectrum range of 458–499 nm (for CFP) and 
508–543 nm (for YFP and GFP). For the excitation source, use 
the 458-nm laser and set the pinhole size to 300.6. 

3. Select “Time Series.” Set the frame rate at 3 min per frame for 
ten frames, and choose “Definite Focus” as the focusing 
strategy. 

4. Immediately after acquiring three images (frame 3) for all 
positions, add the inhibitor (see Table 2 for the list of inhibi-
tors) by carefully lifting the incubator lid and gently add the 
reagents to the dish. 

5. When imaging is done, save the file as [Experiment ID]_FRET. 
lsm. 

6. Save the four files (see Table 3) generated from each imaging 
experiment to a separate folder without other files. This is 
needed for the macros to correctly identify the files. 

3.4 Identifying 

Barcodes Using 

ImageJ 

1. Download and install necessary programs and files: ImageJ Fiji 
from https://imagej.net/software/fiji/, Python 3 from 
https://www.python.org/, and necessary scripts and files 
developed  by  our  lab  from https://github.com/ 
BearHuangLab/Biosensor-barcoding. (An example dataset is 

Table 3 
Imaging file templates and their purposes 

Filename Purpose 

[Experiment ID]_405Ex.lsm For generating barcodes: BFP channel (1-channel) 

[Experiment ID]_633Ex.lsm For spectral analysis: 15 bins 

[Experiment ID]_633Ex_Linear 
unmixing.lsm 

For generating barcodes: RFP channels (3-channel) 

[Experiment ID]_FRET.lsm For selecting ROIs and measuring CFP/YFP intensity 
(2-channel, time-lapse)

https://imagej.net/software/fiji/
https://www.python.org/
https://github.com/BearHuangLab/Biosensor-barcoding
https://github.com/BearHuangLab/Biosensor-barcoding


contained in the folder “4. Toy Example”; the folder contains a
readme.txt which describes how to run the example.)
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2. Open Fiji. Open the image file ending with “FRET.lsm” by 
dragging it onto the ImageJ toolbar. 

3. Next, open the ImageJ macro titled “2. Barcode identifica-
tion/Image Analysis.ijm” for barcode selection. 

4. In the macro window, select “Run” and enter the number of 
positions in the images and time points per position. Click 
“OK” to continue. 

5. After clicking “OK,” the “FRET.lsm” file will be split into two 
image windows: “combined-YFP” and “combined-CFP,” and 
a dialog box will prompt the user to select ROIs. DO NOT 
click OK until all ROIs are selected. 

6. Use the selection tools to circle cells with visible fluorescence in 
the “combine-YFP” window. Adjust the contrast to see cells of 
low intensity. Individually outline each cell by using the oval 
select tool and pressing “T” to record the position of the cell 
into the ROI manager. Each circled area should include only 
one cell. Scroll across all time points to make sure that cells 
remain in the circled region (see Note 6). Click “OK” on the 
dialogue box when finished. 

7. The macro will then prompt the user to enter the experiment 
name. Enter a name (e.g., “YYYYMMDD HeLa Cells”) and 
press enter. The macro will proceed to collect data for each cell 
and write it to files in the experiment folder. 

8. Before analysis with the deep learning models, create a list of 
barcodes to classify by editing the barcode list file (Barcode 
identification>Barcode reading GUI>Barcode list.txt). 

9. To automatically classify each fluorescent barcode, run the 
script “Barcode.py” to open the Barcode Prediction GUI. To 
run the script, open a command line, and type “python” fol-
lowed by the path to your script, that is, 

> python ./path_to_the_folder/Barcode reading GUI/Bar-
code.py 

Note that the script requires the python package “tensor-
flow.” To install it (if it is not already installed), the latest 
version of pip must be installed first, and then pip can be used 
to install tensor flow. Use the following commands: 

>pip install --upgrade pip 
>pip install tensorflow 

10. In the GUI, select and load or confirm the prediction models, 
the barcode list, barcode image folder (“Barcodes” in experi-
ment folder), and spectral data (***_spectrumdata.txt in 
experiment folder) (see Note 7). Edit the output directory if
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desired. Click “Predict barcode” to generate a file called “mod-
elpred.csv” containing the predicted barcode for each cell. 

11. For best results, single-fluorophore biosensors GCaMP6S and 
PH-AKT should have their ROIs shrunk to include only the 
cell after classification. For PH-AKT, only the cytosol should 
be included. This can be done by opening combined-YFP.tif 
and ***_FRET_ROISet.zip from the experiment folder in 
ImageJ, shrinking the ROI of each cell with a single-
fluorophore, and recording the intensity More>Multi-Measur-
e>Ok in the ROI Manager. The resulting intensity data should 
be pasted to overwrite the YFP data in the *** _ROIData.csv 
file (also in experiment folder). This step can also be done using 
the macro Barcode identification>“PH-AKT Reprocessing.ijm.” 

3.5 Analysis of 

Biosensor Response 

1. Open the Excel template Analysis>“10Mix_Template_STAR_-
Protocols.xlsx.” 

2. Switch to the sheet “Barcodes” and edit the barcode-biosensor 
combinations if needed. 

3. Switch to the sheet “All_Cells” and copy over the biosensor 
classification and signal data. From the barcode prediction 
output (modelpred.csv), copy the columns [Index] and [Thre-
sholded] to the template columns [Position] and [Barcode], 
respectively. From the file ***_ROIdata.csv in the experiment 
folder, copy the raw fluorophore data and transpose paste 
(in Excel Right Click>Paste Options>Transpose (T)) into the 
template columns [YFP1]...[CFP10]. Do not copy any row 
or column headers from data files. The activities will be calcu-
lated automatically. 

4. The final result will be in the sheet “Analysis.” The activities are 
normalized to the average of those in the prestimulus levels, 
and biosensors with “inverted” design (i.e., less FRET or fluo-
rescence when active) have the raw signal inverted so that the 
displayed signal directly corresponds to activity. In other 
words, the activities represent YFP/CFP for PicchuEV, 
RhoA-2G, EV-ROCK, EKAR, and EV-S6K; CFP/YFP for 
Syk, Src, and Lyn-FAK; cytosolic fluorescence (GCaMP6S); 
and 1/cytosolic fluorescence (PH-AKT). 

3.6 Generation of 

Interaction Map 

By analyzing the biosensor responses to inhibitors, we can deduce 
how the nodes in the network interact with each other. For 
instance, when compared to the responses to the vehicle control 
(DMSO), the use of the FAK inhibitor led to a significant decrease 
in the activity of FAK, Src, and ERK while increasing the activity of 
RhoA (Fig. 3a). This suggests that FAK has a positive interaction 
with Src and ERK but a negative interaction with RhoA (Fig. 3b). 
To construct a comprehensive interaction map for the EGFR



�

signaling network, we compare the biosensor responses to all inhi-
bitors with those of the vehicle control (Fig. 4a). This analysis 
comprised the following steps: 
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Fig. 3 Inferring interactions from responses to inhibitors (a) Responses of biosensors to the FAK inhibitor 
PF-562271. Red and blue stars indicate statistically significant decrease and increase, respectively, in the 
activity induced by the FAKi (orange) when compared to the DMSO control (gray). (b) Positive (red) and 
negative (blue) interactions between FAK and other nodes in the network can be inferred from a decreased or 
increased response, respectively, to the FAK inhibitor 

1. Calculate the Total Activity Score (TAS) of each cell by 
summing up the activity (from Subheading 3.3, step 2) across 
all time points. 

2. For each inhibitor experiment, compare the TAS of cells 
expressing specific biosensor (inferred from the barcode) with 
the TAS of the same biosensor in the DMSO control experi-
ment using student’s t-test to get the significance (p values). 

3. The effects of inhibitors on biosensors can be represented by 
the matrix of inhibition, in which the value of each element is 
calculated by: -log(p-value) x direction of change (i.e., +1 for 
positive effects; 1 for negative effects (Fig. 4b). 

4. Generate the interaction diagram based on the matrix of inhi-
bition. As explained above (Fig. 3), positive and negative inter-
actions are assigned for inhibitory and activating effects, 
respectively (Fig. 4c). 

3.7 Concluding 

Remarks 

The interaction map that has been created serves as a valuable tool 
for future investigations of the EGFR signaling network and for 
identifying novel interactions within signaling networks of specific



cells. However, it is important to consider that certain interactions 
may be indirect or influenced by unintended effects of the inhibi-
tors and could vary depending on the cell type being studied. 
Nonetheless, these findings emphasize the intricate regulatory con-
nections between nodes in the EGFR signaling network and dem-
onstrate an effective approach to uncovering previously unknown 
interactions within signaling networks of specific cell types. 
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Fig. 4 Constructing the interaction map (a) Responses of biosensors to inhibitors are displayed as traces in 
orange, while the traces in gray indicate the responses to the vehicle control. (b) The matrix of inhibition 
displays how inhibitors affect the activities of biosensors. Red and blue colors indicate negative and positive 
effects, respectively, while the color scale indicates the statistical significance. Biosensors associated with the 
targets of inhibitors are indicated by black boxes. From the inhibition matrix, feedback loops are deduced by 
assigning positive (red) or negative (blue) interactions based on whether an inhibitor resulted in the inhibition 
or activation, respectively, of another node in the network
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4 Notes 

1. GFP and YFP are both imaged under the excitation laser for 
CFP (458 nm). In some publications, the YFP channel is 
labeled as the FRET channel, and the YFP/CFP ratio as the 
FRET/CFP ratio. 

2. In order to optimize your transfection process, it is recom-
mended to work with healthy cells that have undergone only 
a few passages. Regular maintenance of the cells is also impor-
tant to prevent overcrowding. When it comes to transfection, it 
is best to aim for a cell density of 70–80%. 

3. If the barcode signal is too low, increase the DNA amount 
during transfection. Additionally, make sure to use high-quality 
plasmid DNA that is free from phenol, sodium chloride, and 
endotoxins. 

4. During focus adjustment or cell search, it is recommended to 
lower the laser power, minimize exposure time, and utilize RFP 
instead of BFP due to its susceptibility to quick bleaching. 

5. Depending on the velocity of the motorized stage and the time 
interval between consecutive image frames, the number of 
positions can be adjusted to optimize the number of cells 
captured and permit ample time for both image acquisition 
and EGF administration. 

6. If it proves challenging to encompass the entire cell within the 
chosen region, try incorporating a portion of the nucleus and 
plasma membrane. In addition, exclude apoptotic cells, debris, 
or impurities from the area of interest. 

7. The thresholds for models 2 and 3 are both set to 0.9 by 
default. While a greater threshold typically results in more 
precise outcomes, it also has the tendency to recognize fewer 
cells. 
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