
 Title: Targeting Ras signaling excitability in cancer cells through combined 
 inhibition of FAK and PI3K 
 Authors: Chao-Cheng Chen  1,*  , Suyang Wang  1  , Jr-Ming Yang  1,  ✝  , Chuan-Hsiang Huang  1,2,3,  ✝ 

 1  Department of Pathology, Johns Hopkins Medical Institutions,  Baltimore, Maryland 21205, USA 
 2  Department of Cell Biology, School of Medicine, Johns  Hopkins University, Baltimore, Maryland 21205, USA 
 3  Center for Cell Dynamics, School of Medicine, Johns  Hopkins University, Baltimore, Maryland 21205, USA 
 *Present address: BC Cancer Centre, Vancouver, British Columbia, Canada 
 ✝  Correspondence:  chuang29@jhmi.edu  (C.-H.H.),  jyang38@jhmi.edu  (J.-M.Y.) 

 1 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 13, 2023. ; https://doi.org/10.1101/2023.06.12.544386doi: bioRxiv preprint 

mailto:chuang29@jhmi.edu
mailto:jyang38@jhmi.edu
https://doi.org/10.1101/2023.06.12.544386
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Abstract 
 The Ras/PI3K/ERK signaling network is frequently mutated in various human cancers including cervical cancer 
 and pancreatic cancer. Previous studies showed that the Ras/PI3K/ERK signaling network displays features of 
 excitable systems including propagation of activity waves, all-or-none responses, and refractoriness. 
 Oncogenic mutations lead to enhanced excitability of the network. A positive feedback loop between Ras, 
 PI3K, the cytoskeleton, and FAK was identified as a driver of excitability.  In this study, we investigated the 
 effectiveness of targeting signaling excitability by inhibiting both FAK and PI3K in cervical and pancreatic 
 cancer cells. We found that the combination of FAK and PI3K inhibitors synergistically suppressed the growth 
 of select cervical and pancreatic cancer cell lines through increased apoptosis and decreased mitosis. In 
 particular, FAK inhibition caused downregulation of PI3K and ERK signaling in cervical cancer but not 
 pancreatic cancer cells. Interestingly, PI3K inhibitors activated multiple receptor tyrosine kinases (RTKs), 
 including insulin receptor and IGF-1R in cervical cancer cells, as well as EGFR, Her2, Her3, Axl, and EphA2 in 
 pancreatic cancer cells. Our results highlight the potential of combining FAK and PI3K inhibition for treating 
 cervical and pancreatic cancer, although appropriate biomarkers for drug sensitivity are needed, and 
 concurrent targeting of RTKs may be required for resistant cells. 
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 Introduction 
 The signaling network involving Ras GTPases and their downstream effectors including PI3K and MAPK/ERK 
 pathways regulates diverse cellular processes such as cell proliferation, differentiation, apoptosis, metabolism, 
 protein synthesis, and cell motility  [1]  . Activation  of the network through mutations or overexpression is 
 frequently found in human cancer  [2]  . For example,  10-36% of cervical cancers harbor activating mutations in 
 PIK3CA, which codes for the catalytic subunit of PI3Kα  [3–6]  , and KRAS mutations are found in ~8% of 
 non-SCC of the cervix  [7]  (ref). The MAPK/ERK signaling  pathway has also been implicated in cervical cancer 
 pathogenesis  [8,9]  .Clinical trials of PI3K pathway  inhibitors showed promise in stabilizing the progression of 
 metastatic cervical cancer, but the response was variable  [10,11]  . In pancreatic ductal adenocarcinoma 
 (PDAC), KRAS mutations are found in more than 90% of tumors  [12,13]  , and some hereditary pancreatic 
 cancers have been linked to mutations that change posttranslational modification of Ras GTPases  [14]  .  In 
 KRAS wild-type PDAC, activation of the network often results from various mechanisms including BRAF 
 mutation and RTK fusions  [15]  . 

 Recent studies on the spatiotemporal dynamics Ras/PI3K/ERK signaling at the cellular level revealed features 
 of excitable systems. For example, Ras and PI3K activities propagate as self-organized waves in various cell 
 types such as Dictyostelium, neutrophils, fibroblasts, and epithelial cells  [16–24]  , whereas ERK displays 
 pulsatile activation in individual cells and can propagate as waves across the cell population  [25–30]  . 
 Furthermore, when stimulated by growth factors or chemoattractants, activation of the signaling network 
 displays all-or-none characteristics and refractoriness  [21–23,31–33]  . Our previous study demonstrated that 
 pulsatile ERK activity is driven by localized Ras activation on protrusions, which are stochastically generated 
 by an positive feedback loop involving Ras, PI3K, actin, and focal adhesion kinase (FAK)  [23]  . Chemical  and 
 mechanical stimuli may enter the feedback loop at different points to modulate the frequency of protrusions 
 and ERK pulses. Thus, the excitability property allows the Ras signaling network to integrate different types of 
 stimuli in the regulation of cell proliferation. We also found that oncogenic mutations induce enhanced 
 excitability of the Ras/PI3K/ERK signaling network  [22,23]  . 

 In this study, we test the hypothesis that inhibition of the molecular mechanism of Ras signaling excitability can 
 effectively block cancer cell growth, focusing on the positive feedback loop between Ras, PI3K, actin, and FAK 
 [23]  . Due to possible redundant pathways, we reason  that effective inhibition of excitability requires 
 simultaneous blocking of multiple proteins. In support of this idea, multipoint inhibition of the same signaling 
 pathway has been shown to be more effective than inhibiting a single node  [34]  . Therefore, we tested whether 
 combined inhibition of PI3K and FAK synergistically reduces cancer cell viability since: 1) small molecule 
 inhibitors are readily available for these kinases; 2) FAK and PI3K are hyperactivated or overexpressed in 
 cancer such as cervical cancer and PDAC  [35,36]  ; and  3) inhibitors of FAK or PI3K have been tested in clinical 
 and preclinical settings with variable outcomes  [37,38]  ,  but to our knowledge their combinations have not been 
 critically evaluated. Our results showed that as a single agent, FAK inhibition caused distinct effects on PI3K 
 and ERK signaling in different cancer cell lines, while PI3K inhibitors activated multiple receptor tyrosine 
 kinases (RTKs), including insulin receptor and IGF-1R in cervical cancer cells, as well as EGFR, Her2, Her3, 
 Axl, and EphA2 in pancreatic cancer cells. When combined, FAK and PI3K inhibitors synergistically 
 suppressed the growth of select cervical and pancreatic cancer cell lines through increased apoptosis and 
 decreased mitosis. These findings support the potential usefulness of combining FAK and PI3K inhibition for 
 treating cervical and pancreatic cancer. Additionally, they highlight the necessity for improved biomarkers to 
 assess drug sensitivity and the development of strategies to overcome drug resistance. 
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 Materials and Methods 

 Cell lines 
 HeLa and SiHa cell lines were purchased from ATCC. Panc10.05, A6L and Panc215 cells were gifts from the 
 lab of Laura Wood (JHU). Cells were grown at 37°C and 5% CO  2  in DMEM high glucose medium (Gibco, 
 #11965092) supplemented with 10% FBS (Corning Cellgro, 35-010-CV), 1 mM sodium pyruvate (Gibco, 
 #11360070), and 1X nonessential amino acids (Gibco, #11140050). CaSki cells were grown at 37℃ and  5% 
 CO  2  in RPMI-1640 high glucose medium (Gibco, #11965092)  supplemented with 10% FBS, 1 mM sodium 
 pyruvate, and 1X nonessential amino acids. 

 Chemical reagents 
 Stocks of 10 mM PF-04691502 (Sigma-Aldrich, PZ0235), 5 mM ZSTK474 (Selleckchem, S1072) and 50 mM 
 VS-6063 (defactinib; Selleckchem, S7654) were prepared by dissolving the chemicals in DMSO. All drug 
 stocks were stored at -20°C. 

 Cell viability assay 
 The viability of cells after drug treatment was performed by Cell Counting Kit-8 (CCK-8, Dojindo, CK04-20) 
 according to the manufacturer's instructions. Briefly, 3,000 cells were seeded in a 96-well plate and incubated 
 at 37°C and 5% CO  2  overnight before being exposed  to drugs. After a designated period of incubation, the 
 CCK-8 reagent was directly added into each well and incubated with cells for another 3h. The absorbance of 
 each well was analyzed by an ELISA reader (800 TS absorbance reader, BioTek) equipped with a 450 nm 
 filter. 

 Analysis of synergy 
 Bliss synergy scores were calculated using SynergyFinder  [39]  . Briefly, the cell viabilities results were  entered 
 into an example table format from SynergyFinder website (  https://synergyfinder.fimm.fi  ). The data was then 
 uploaded to the SynergyFinder website. The four-parameter logistic regression (LL4) was chosen for the 
 curve-fitting algorithm. The outlier detection and Bliss model were selected for calculating drug combination 
 effect. 

 RealTime-Glo MT Cell Viability Assay 

 Monitoring cell viability in real time was performed by the RealTime-Glo MT Cell viability assay kit (Promega, 
 G9713) according to the manufacturer’s instructions. Briefly, after three thousand cells were plated and 
 incubated in a 96-well white opaque plate overnight, the medium was replaced with a phenol red-free medium 
 containing vehicle (DMSO), PF-04691502, VS-6063 or both drugs. 1000X MT Cell Viability Substrate and 
 1,000X NanoLuc  ®  Enzyme were diluted to 2X with medium,  and then added to each well in equal volumes. The 
 luminescence intensity was measured by a BMG LABTECH FLUOstar Omega Microplate Reader (Cary, NC, 
 USA). 

 Cell cycle, cell growth and apoptosis analysis by flow cytometry 
 Flow cytometry was used to examine DAPI for cell cycle analysis, Ki-67 for cell proliferation, and cleaved 
 caspase 3 expression for apoptosis following drug treatment. Cells were fixed with 4% formaldehyde and 
 permeabilized using ice-cold methanol. The cells were then incubated with DAPI (10 mg/mL, 1:1000),  mouse 
 anti-human Ki-67 (Cell Signaling #9449, 1:400), and rabbit anti-human cleaved caspase 3 antibodies (Cell 
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 Signaling #9661, 1:800) at room temperature for 1 hour. Anti-mouse IgG DyLight 594 (Invitrogen #35511, 
 1:100) and anti-rabbit IgG DyLight 488 (Invitrogen #35553, 1:100) were used to detect anti-Ki-67 and 
 anti-cleaved caspase 3 antibodies, respectively. The experiments were carried out on a CytoFLEX Flow 
 Cytometry (Beckman Coulter, CA, USA), and the data was analyzed with FlowJo v10 from BD Biosciences 
 (Franklin Lakes, NJ, USA). 

 Immunoblotting 
 The following antibodies were purchased from Cell Signaling Technology: anti-FAK (#13009, 1:1000), 
 anti-phospho-FAK (#8556, 1:500), anti-AKT (#2920, 1:1000), anti-phospho-AKT (#4060, 1:1000), anti-ERK 
 (#9107, 1:1000), anti-phospho-ERK (#9101, 1:1000), GAPDH (#2118, 1:2000), Donkey anti-Rabbit Alexa 
 Fluor  TM  647 (ThermoFisher, A-31573, 1:5000), and Donkey  anti-Mouse Alexa FluorTM 647 (ThermoFisher, 
 A-31571, 1:5000). 

 The procedure of immunoblotting has been described in our previous publication  [23]  . Briefly, cells  were 
 harvested and lysed in 1X RIPA buffer (Cell Signaling, #9806) containing 1X protease inhibitor cocktail (Roche, 
 #11873580001) and 1X phosphatase inhibitor (Sigma, #P5726). Cell lysates were collected after centrifugation 
 and then stored at -80℃ if not used immediately. After mixing with sample buffer and boiling at 95℃ for 5 min, 
 proteins were separated by SDS-PAGE using 4–20% Criterion™ TGX™ Precast Midi Protein Gels (Bio-Rad, 
 #5671094), and then transferred to the low fluorescence background PVDF membrane (Millipore, #IPFL00005) 
 in an ice bath at 80V for 1h. Membranes were incubated with primary antibodies overnight followed by 
 incubation with secondary antibodies in 5% BSA in TBST at room temperature for 1h. Images were taken by 
 the Pharos Molecular Imager (BioRad) and analyzed using ImageJ. Background was subtracted from 
 intensities of individual protein bands. Phosphoprotein levels were normalized to either GAPDH or total level of 
 the corresponding protein. 

 Phospho-RTK array 
 The receptor tyrosine kinase (RTK) activities in cells after drug treatment were analyzed by a Proteome Profiler 
 Human Phospho-RTK Array Kit (R&D Systems, ARY001B) according to the manufacturer's instructions. After 
 exposure to drugs for the designated periods, cells were harvested and lysed by lysis buffer provided in the kit 
 (R&D Systems, #895943). The supernatant was collected after centrifugation at 14,000xg for 5 min at 4°C. The 
 array membrane was soaked in the blocking buffer at room temperature for 1 h and incubated with lysed 
 samples at 4°C overnight. After washing with the wash buffer, the membrane was immersed in secondary 
 antibodies at room temperature for 2 h. The images were acquired using the ChemiDoc  TM  Touch Imaging 
 System (Bio-Rad). 

 Results 

 Synergy between FAK and PI3K inhibition on the growth of cervical and pancreatic cancer 
 cells 
 We investigated the impact of combined PI3K and FAK inhibition on cancer cell growth. First, we assessed the 
 IC50 values of PF-04691502 (a PI3K/mTOR dual inhibitor) and VS-6063 (defactinib, a FAK inhibitor) in 
 suppressing the growth of three cervical cancer lines: HeLa, SiHa, and CaSki. In these cell lines, the IC50 was 
 approximately 0.1 μM for PF-04691502 and 5 μM for VS-6063 (  Fig. S1A  ). Subsequently, we treated the cells 
 with combinations of varying concentrations of PF-04691502 and VS-6063. Evaluation of the Bliss score 
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 revealed that PF-04691502 and VS-6063 synergistically inhibited the growth of HeLa cells, but not SiHa or 
 CaSki cells (  Fig. 1A, B  ). To broaden our analysis,  we performed similar experiments in two pancreatic cancer 
 cell lines, A6L and Panc10.05. Encouragingly, we observed synergistic inhibition of growth in both cell lines 
 when treated with PF-04691502 and VS-6063 (  Fig. 1C,  D  ). 

 Figure 1. Synergy between PI3K and FAK inhibitors in cervical and pancreatic cancer cell lines. 
 (A-B) Viability of cervical cancer cell lines (A) and pancreatic cancer cell lines (B) measured by CCK-8 assay 
 after treatment with indicated combinations of PF-04691502 and VS-6063 for 48 hours. The numbers 
 represent the percentage of viability compared to that of DMSO control. (C-D) Bliss synergy score for 
 PF-04691502 and VS-6063 calculated from (A-B) using SynergyFinder  [39]  . 

 To gain insight into the dynamics of cell growth in response to PI3K and FAK inhibitor combinations, we utilized 
 the RealTime-Glo MT Cell Viability Assay to track cell behavior over a 72-hour period. For HeLa cells, both 
 PF-04691502 and VS-6063 exhibited cytostatic effects as individual agents but demonstrated cytocidal effects 
 when combined (  Fig. 2A  ). In contrast, the effects of inhibitors on SiHa, A6L, and Panc10.05 were mainly 
 cytostatic. To further investigate the impact of the inhibitors on cell growth and death, we treated HeLa cells 
 with inhibitors followed by flow cytometry analysis of Ki-67, caspase-3, and DAPI staining at 8, 12, and 24 
 hours after treatment (  Fig. 2B, Fig. S2  ). Mitotic (M phase) cells can be identified by a high Ki-67 level and DNA 
 content determined by DAPI staining (  Fig. 2B,C  , red boxes). VS-6063 treatment led to a significant decrease 
 in M phase cells (  Fig. 2D  ) and increase in caspase-3 (+) cells (  Fig. 2E  ). Interestingly, PF-04691502 by itself 
 had limited effects on cell cycle progression and cell death, but synergized with VS-6063 to reduce M phase 
 cells and increase caspase-3 (+) cells (  Fig. 2D, E  ). Together, these findings suggest that PF-04691502 and 
 VS-6063 work together to increase cell death and inhibit cell cycle progression. 
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 Figure 2. Effects of combined PI3K and FAK inhibition on cell proliferation, apoptosis, and cell cycle. 
 (A) Proliferation of cells treated with indicated concentrations of PF-04691502 and VS-6063 tracked using the 
 RealTime-Glo MT Cell Viability Assay. (B) Flow cytometry analysis of caspase-3 and Ki-67 staining of HeLa 
 cells treated with indicated concentrations of PF-04691502 and VS-6063 for 8h, 12h, and 24h. (C) Example of 
 cell cycle phase determination by Ki-67 and DAPI staining. In (B) and (C), red boxes indicate M phase cells. 
 (D-E) Quantification of M phase (red boxes) and caspase-3 (+) cells in (B). The numbers represent mean ± 
 SEM of n=3 experiments. 

 Signaling effects of PI3K and FAK inhibitors in cervical and pancreatic cancer cells 
 To assess the effects of inhibitors on signaling activities, we conducted immunoblotting experiments, focusing 
 on PI3K, ERK, and FAK pathways. Treatment with PF-04691502 led to sustained suppression of phospho-AKT 
 in cervical cancer cell lines SiHa and CaSki (the level was undetectable in HeLa) but only transient 
 suppression of phospho-AKT in pancreatic cancer cell lines Panc10.05, A6L, and Panc215 (  Fig. 3  ). To rule  out 
 that the pAKT rebound was due to inhibitor degradation, we collected conditioned media from cells treated with 
 the inhibitor for 0~72 hours. When the conditioned media were added to fresh cells, phospho-AKT was 
 inhibited, suggesting that the PI3K inhibitor retained its activity (  Fig. S3  ). Thus, reactivation of AKT  in the 
 presence of PI3K inhibition was not due to loss of inhibitor potency. PF-04691502 also caused an increase in 
 phospho-FAK over 72 hours, but the kinetics differed between cell lines (  Fig. 3  ). 

 In contrast, VS-6063 caused sustained reduction in phospho-FAK in both cervical and pancreatic cell lines 
 (  Fig. S4  ). VS-6063 also caused reduced phospho-ERK  in cervical cancer cell lines (  Fig. S4A  ). Interestingly, 
 VS-6063 caused increased phospho-ERK levels in pancreatic cell lines (  Fig. S4B  ). 
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 Figure 3. Immunoblotting of cervical (A) and pancreatic (B) cancer cells treated with PF-04691502. 
 Cells were treated with PF-04691502 for different incubation periods immunoblotted for total and 
 phosphorylated forms of AKT, FAK, and ERK. GAPDH was used as a loading control. 

 When HeLa cells were exposed to a combination of PF-04691502 and VS-6063, we observed a significant 
 decrease in both phospho-ERK and phospho-FAK due to cell death within 24 hours (  Fig. 4A  ). In contrast,  the 
 combination of PF-04691502 and VS-6063 caused a significant increase in phospho-ERK in both Panc10.05 
 (  Fig. 4B  ) and A6L (  Fig. S5  ). Taken together, these  results suggest that PI3K and FAK inhibitors have distinct 
 effects on cervical and pancreatic cancer cell lines, notably the opposite effect on phospho-ERK. However, it is 
 crucial to note that the magnitude and kinetics of these changes exhibited variations across different 
 experiments and cancer cell lines. These findings signify the existence of complex and non-linear interactions 
 within the RTK signaling network, which are further influenced by the specific characteristics of each cell line. 
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 Figure 4. Immunoblotting of HeLa cells treated with PI3K and FAK inhibitors. 
 HeLa cells (A) and Panc10.05 (B) cells were treated with PF-04691502, VS-6063, or the combination of the 
 two inhibitors. Samples were taken at the indicated time points for immunoblotting of total and phosphorylated 
 forms of AKT, FAK, and ERK, as well as the GAPDH loading control. 

 PI3K inhibition induces activation of multiple RTKs 
 Interestingly, cells treated with PF-04691502 showed extra bands above the FAK band (MW: 125 kDa) after 
 24-48 hours in the phospho-FAK immunoblot (  Fig. 3A,  B, red boxes  ). The size of the bands varied among  the 
 cell lines, ranging from molecular weight of 150~180 kD (designated pp180) except for SiHa, in which the size 
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 was smaller than 150 kD. Treating cells with ZSTK474, a pan-class I PI3K inhibitor, induced similar bands in a 
 dose- and time-dependent manner (  Fig. 5A, B  ). Since  the phospho-FAK antibody is known to cross-react with 
 tyrosine phosphorylated proteins such as EGFR, we tested whether pp180 represented activation of EGFR 
 and HER2, which have similar molecular weights. We found that PF-04691502 treatment led to significant 
 increase in the levels of EGFR, phospho-EGFR, HER2 and phospho-HER2 in pancreatic cancer cell lines 
 Panc10.05 and A6L (  Fig. 5C  ). Although EGFR and HER2  levels were also increased in cervical cancer cell 
 lines, they were not accompanied by an increase in the phosphorylated forms of these proteins. 

 Figure 5. Immunoblotting of cells treated with PI3K inhibitors. 
 (A-B) Immunoblots of FAK and phospho-FAK for HeLa and Panc10.05 cells treated with different 
 concentrations of ZSTK474. (B) Immunoblots of FAK and phospho-FAK for cervical (top) and pancreatic 
 (bottom) cancer cells treated with ZSTK474 for the indicated duration. Red boxes indicate the unknown bands 
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 found in phospho-FAK immunoblots. (C) Immunoblots of EGFR, phospho-EGFR, HER2, and phospho-HER2 
 for cervical (top) and pancreatic (bottom) cancer cells treated with PF-04691502 for the indicated duration. 

 To comprehensively identify the RTKs that may be activated by PI3K inhibition, we performed phospho-RTK 
 arrays on cells before and after treatment with PI3Ki for 48 hours. In HeLa cells, PF-04691502 treatment led to 
 an increased phosphorylation of insulin R and IGF-1R, as well as decreased phosphorylation of HGFR and Dtk 
 (  Fig. 6A  ). In Panc10.05 cells, PF-04691502 treatment  led to an increased phosphorylation of EGFR, Her2, 
 Her3, Axl, and EphA2 (  Fig. 6B  ). Unlike the finding  in HeLa cells, HGFR activity did not decrease in Panc10.05 
 after PF-04691502 treatment for 48h. An increased HER3 activity was also noticed in A6L cells after 
 PF-04691502 treatment (  Fig. 6C  ). 

 Figure 6. Phospho-RTK array of HeLa, Panc10.05, and A6L cells. 
 Cells were treated with DMSO or PF-04691502 for 48 hours and the phospho-RTK activity was probed using 
 the Proteome Profiler Human Phospho-RTK Array Kit (R&D Systems, ARY001B). Red and green ovals denote 
 spots showing decreased and increased intensity, respectively, after PF-04691502 treatment. 

 Discussion 
 In this study we explored the idea of targeting excitability of the Ras signaling network for cancer treatment. 
 We previously identified a positive feedback between Ras, PI3K, the cytoskeleton, and FAK that is required for 
 the excitability  [23]  . Due to the redundancy in signaling  networks, we reasoned that effective blockade of 
 excitability requires simultaneous inhibition of more than one node in the feedback loop. Vertical inhibition of 
 the same pathway has been found to be more effective than blocking a single node in cancer treatment, as 
 exemplified by the combination of BRAF and MEK inhibitors in BRAF mutant melanoma  [40,41]  . Here we 
 chose to test the effects of simultaneous FAK and PI3K inhibition on the growth and signaling of cancer cells. 

 FAK is commonly overexpressed in various cancer types including cervical cancer cells  [35,36,42]  , and FAK 
 inhibition reduces cervical cancer xenograft growth and metastasis  [43]  , suggesting that FAK is a promising 
 cancer target. However, as a single agent, FAK inhibitors showed limited efficacy. FAK has been implicated in 
 the resistance to targeted therapy, and combinations of FAK inhibitors with other inhibitors may enhance the 
 efficacy  [37,42]  . PI3K signaling plays a crucial role  in the growth, proliferation, and survival of cells, making it 
 an appealing target for cancer treatment. However, when PI3K inhibitors are used alone in clinical trials, their 
 effectiveness is limited due to resistance to PI3K inhibition. The narrow therapeutic range and frequent 
 treatment-related side effects further limit the efficacy of PI3K inhibitors. Therefore, finding ways to maximize 
 the usefulness of these agents in patient treatment remains a challenging task  [44,45]  . 
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 While extensive crosstalks exist between FAK and PI3K signaling pathways  [46]  , studies on simultaneous 
 targeting of PI3K and FAK inhibitors are scarce. An earlier study reported potential synergy between PI3K and 
 FAK inhibitors in lung cancer cells with reduced PTEN  [47]  . Our findings showed the synergy of PI3K and  FAK 
 inhibitors in select cervical and pancreatic cancer cell lines by increasing apoptosis and decreasing cell cycle 
 progression. Interestingly, PI3K inhibition induced the activation of multiple RTKs including insulin receptor and 
 IGF-1R in cervical cancer cells, as well as EGFR, Her2, Her3, Axl, and EphA2 in pancreatic cancer cells. 
 Earlier studies showed that pharmacological inhibition of PI3K signaling often leads to the development of 
 adaptive resistance  [45]  , and one common mechanism  involves FOXO-mediated transcription of RTKs, 
 including HER3, EGFR, and INSR/IGFR1  [48–50]  . Resistance  may also occur due to RTK-ligands interaction 
 from autocrine production by the tumor cells themselves, paracrine contribution from the tumor stroma, or 
 systemic production  [51,52]  . To combat these responses,  combining PI3K pathway inhibitors with RTK 
 inhibitors or blocking antibodies has been suggested as a potential solution  [53–55]  . 

 In conclusion, our findings have demonstrated a synergy between PI3K and FAK inhibitors in suppressing the 
 growth of select cervical and pancreatic cancer cells. This revelation underscores the potential of combining 
 these inhibitors as a therapeutic strategy against these malignancies. However, it is important to note that while 
 the synergy was observed in some cancer cell types, it was not universal across all subtypes within these 
 tumor types. Hence, there arises a critical need for identifying and establishing biomarkers of sensitivity that 
 can aid in identifying patients who would benefit the most from this potent combination therapy. Such 
 biomarkers would be invaluable in personalized medicine and maximize treatment efficacy. 
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 Supplemental information 

 Figure S1. IC50 of PF-04691502 (A) and VS-6063 (B) in cervical cancer cell lines. 
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 Figure S2. Cell cycle analysis of HeLa cells by flow cytometry of DAPI staining. 
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 Figure S3. Stability of PI3K inhibitors.  A6L cells  were treated with the indicated inhibitors PF-04691502 or 
 ZSTK474 for different periods. The medium was collected and transferred to another new plate of A6L cells. 
 After 1 h incubation, cells were harvested for immunoblotting with the indicated antibodies. 

 20 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 13, 2023. ; https://doi.org/10.1101/2023.06.12.544386doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.12.544386
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Figure S4. Immunoblotting of cervical and pancreatic cancer cells treated with FAK inhibitors. 
 Cervical (A) and pancreatic (B) cancer cells were treated with VS-6063 and samples were taken at the 
 indicated time points for immunoblotting of total and phosphorylated forms of AKT, FAK, and ERK, as well as 
 the GAPDH loading control. 
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 Figure S5. Immunoblotting of pancreatic cancer cell A6L treated with PI3K and FAK inhibitors. 
 A6L cells were treated with PF-04691502, VS-6063, or the combination of the two inhibitors. Samples were 
 taken at the indicated time points for immunoblotting of total and phosphorylated forms of AKT, FAK, and ERK, 
 as well as the GAPDH loading control. 
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