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Cells have an internal compass that enables them to move along
shallow chemical gradients. As amoeboid cells migrate, signaling
events suchasRas andPI3Kactivationoccur spontaneouslyonpseu-
dopodia. Uniform stimuli trigger a symmetric response, whereupon
cells stop and round up; then localized patches of activity appear as
cells spread. Finally cells adapt and resume random migration. In
contrast, chemotactic gradients continuouslydirect signalingevents
to the front of the cell. Local-excitation, global-inhibition (LEGI) and
reaction–diffusion models have captured some of these features
of chemotaxing cells, but no system has explained the complex
response kinetics, sensitivity to shallow gradients, or the role of
recently observed propagating waves within the actin cytoskele-
ton.We report here that Ras andPI3K activationmove in phasewith
the cytoskeleton events and, drawing on all of these observations,
propose the LEGI-biased excitable network hypothesis. We formu-
late a model that simulates most of the behaviors of chemotactic
cells: In the absence of stimulation, there are spontaneous spots
of activity. Stimulus increments trigger an initial burst of patches
followed by localized secondary events. After a few minutes, the
system adapts, again displaying random activity. In gradients, the
activity patches are directed continuously and selectively toward
the chemoattractant, providing an extraordinary degree of amplifi-
cation. Importantly, by perturbing model parameters, we generate
distinct behaviors consistent with known classes of mutants. Our
study brings together heretofore diverse observations on sponta-
neous cytoskeletal activity, signaling responses to temporal stimuli,
and spatial gradient sensing into a unified scheme.

adaptation ∣ cell migration ∣ excitability ∣ inflammation ∣ metastasis

Many cells have an internal “compass” that enables them to
sense, and move directionally along, gradients of extracel-

lular chemicals, electric fields, or mechanical forces. Increasing
evidence suggests that chemotaxis plays an extensive role in
normal physiology (1). During embryogenesis, for example, che-
moattractants guide primordial germ cells to proper locations,
mediate the formation of organs, and control the wiring of the
nervous system. In the adult, chemotaxis is needed for immune
cell trafficking, wound healing, and stem cell homing to niches.
Chemotaxis is also involved in the pathology of numerous dis-
eases. For example, the migration of immune cells to specific sites
plays a key role in inflammatory disorders such as asthma, arthri-
tis, and vascular disease; and, in cancer metastasis, cells escape
the primary tumor, enter the circulation, and emigrate to specific
tissues (2, 3). Chemotactic behavior is virtually identical in human
leukocytes and free-living amoebae, indicating that the process
has ancient origins and that the basic mechanisms of gradient
detection are shared among eukaryotic cells.

Chemotaxis can be conceptually divided into processes of mo-
tility, directional sensing, and polarity (see Box 1) (4, 5). Motility
in amoeboid cells such as Dictyostelium and human leukocytes
involves a periodic extension and retraction of pseudopodia
coupled with regulated adhesion, which moves cells about in
the absence of a gradient (6–8). Directional sensing refers to

the ability of chemotactic cells to read the gradient and bias
the motile machinery. Chemoattractants are recognized by
G-protein-coupled receptors and associated G proteins that
are uniformly distributed along the cell perimeter but, neverthe-
less, direct downstream signaling events toward or away from the
high side of the gradient. For example, activation of Ras proteins
and PI3-kinase, accumulation of phosphatidylinositol (3,4,5)
phosphate (PIP3), and new actin polymerization occur at the
front while the PI3-phosphatase, PTEN, and myosin localize at
the rear of the cell (9–12). Polarity is an elongated state where
signaling events occur at and projections extend from the cell
anterior, even in the absence of or in a uniform concentration
of chemoattractant.

An important general characteristic of the physiological re-
sponses to chemoattractants is the tendency to subside during
constant stimulation, a phenomenon referred to as adaptation
(Box 1) (13, 14). The properties of adaptation have been charac-
terized by studying the stimulus–response behavior of numerous
signaling events (15, 16). Generally, the “front” responses, such as
PIP3 accumulation, transiently increase, whereas the “rear” ones
decrease before returning to prestimulus levels. Regardless of
their sign, responses are triggered by increases in receptor occu-
pancy and adapt when occupancy is held constant. Cells respond
again when occupancy is increased further or when the stimulus is
removed and reapplied after a period of deadaptation. A few
events, such as receptor phosphorylation and G-protein dissocia-
tion, do not adapt but persist as long as chemotactic stimuli are
maintained (17–19).

Chemoattractant-mediated responses of Dictyostelium amoe-
bae and human leukocytes are actually biphasic (Box 1). That
is, there is an initial spike that declines sharply by 30 s followed
by a weaker secondary response which occurs over the next several
minutes (20–22). Importantly, at the time of the initial decline,
cells are not yet adapted and will mount another biphasic re-
sponse if the stimulus is removed and immediately reapplied. Only
after 5 min or so, when the secondary responses have subsided,
are cells adapted and completely refractory to immediate reappli-
cation of chemoattractant (13). A key challenge for eukaryotic
chemotaxis is to understand how these kinetically complex, adapt-
ing responses to uniform stimuli relate to the ability of cells to
move continuously and directionally along gradients of chemoat-
tractant and stably localize signaling events toward the high side.

Intriguingly, even in the absence of stimulation, the cortical
cytoskeletons of amoebae as well as human neutrophils display
excitability, which possibly underlies cell morphological changes
including spontaneous motility (23–25). Observations by total
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internal reflection fluorescence microscopy (TIRFM) reveal
propagating waves of recruitment of actin-binding proteins and
suppressor of cAMP receptor (SCAR) subunits to the cell cortex
which can be influenced by chemoattractant. It is generally recog-
nized that propagating waves in biological systems involve an
excitable network with diffusive contact among the elements
(26). In neutrophils, this spontaneous activity appears to drive
projections at the cell perimeter that move the cells, whereas
the patterns observed thus far in Dictyostelium may be related
to the formation of macropinosomes. Because signaling events
are activated at the tips of pseudopodia of randomly migrating
and spreading cells as well as at the rims of macropinosomes,
it is conceivable that the entire biochemical network behaves
in a coordinated fashion. Chemoattractants and other cues might
bias this excitable network to direct migration and related cell
morphological events.

Numerous models have been proposed to capture the fascinat-
ing behavior of chemotaxing cells (27). Several versions of
reaction–diffusion models, designed to explain polarity, have
generated responses that are greatly amplified relative to the
external gradient but did not capture the ability of cells to rapidly
readjust behavior to shifting stimuli. Arrieumerlou and Meyer
obtained realistic chemotactic behavior by having receptor occu-
pancy directly bias randomly generated pseudopodia (28). How-
ever, this system did not adapt and could not account for the
observed excitability of the network. The local-excitation, global-
inhibition (LEGI) model was proposed to explain the signaling
responses of immobilized cells exposed to step increases as well
as gradients of chemoattractant (29, 30). Although the LEGI
scheme can predict the responses to any combination of step
and gradient stimuli, it does not amplify the external gradient.
A clever modification of the LEGI model, referred to as the
“balanced inactivation model” introduced a threshold effect
which increased the extent of amplification (31). However,
neither of these models, in and of themselves, accounts for the
dynamic behavior of chemotaxing cells.

Drawing on all of this previous work, we propose here the
LEGI-biased excitable network hypothesis to account for the
temporal and spatial responses of cells to chemoattractants. We
suggest that upstream signaling components including chemoat-
tractant receptor and G protein read the stimulus and produce

a signal, according to a LEGI scheme, that serves as an input
to a downstream excitable biochemical network that generates
spontaneous pseudopodia. In the course of preparing this manu-
script, a study appeared that used noise-driven FitzHugh–Nagumo
equations to account for the appearance of the PIP3 patches on
cells, but no attemptwasmade to link the responses to chemotactic
stimulation (32). This linkage was the motivation for the LEGI-
biased excitable network hypothesis which applies to random
motility, chemotaxis, as well as the temporal responses of cells
to uniform stimuli.

Results
Biochemical Network Displays Spontaneous Excitability That Can Be
Regulated by Chemoattractant. Our previous observation that
Ras activation and PIP3 accumulation occur at the tips of pseu-
dopodia prompted us to ask whether the excitable waves of
cytoskeletal activity were accompanied by activation of other
parts of the network. As before, we used RBD-GFP and PHCrac-
GFP as biosensors for Ras activation and PIP3 accumulation and
the SCAR complex subunit, Hspc300-GFP, to monitor cytoskele-
tal activity. As shown in Fig. 1 and Movies S1–S3, we observed
patches of RBD-GFP, PHCrac-GFP, and Hspc300-GFP recruit-
ment to the basal surface of the cell. The patches were hetero-
geneous ranging from brief, limited flashes to large expanding
waves. The dynamic character of these events was similar for
all of the components but the Hspc300-GFP patches seemed to
have a finer structure and more punctuate spots than the others.

RBD-GFP, PHCrac-GFP, and Hspc300-GFP displayed similar
patterns of dynamic behavior, which suggested to us that these
occurred simultaneously, but others have reported wave-like
distributions of PHCrac-GFP that were not colocalized with the
cytoskeletal events. To address this issue, we coexpressed RBD-
GFP or PHCrac-GFP with the actin-binding protein, LimE-RFP,
and imaged the signaling events and new actin polymerization
simultaneously. As shown in Fig. 1B and Movies S4 and S5, both
RBD-GFP and PHCrac-GFP dynamically colocalized with LimE-
RFP. At a frame rate of 3 s, all of the events appeared to occur
in the same place at the same time. Most of the excitable behavior
we observed in moving cells displayed this pattern. Occasionally,
we also observed situations where a broad PHCrac-GFP signal
was bounded by a thinner band of LimE-RFP, as has been re-

Box 1. Temporal and Spatial Responses of Chemotactic Cells

Motility PolarityDirectional
sensing

Unpolarized cell Polarized cell

Chemotaxis in amoeboid cells such as Dictyostelium and human leuko-
cytes involves motility, directional sensing, and polarity as indicated
above. Motility is achieved through a rhythmic extension of pseudopodia
which propels cells in random directions. Directional sensing denotes the
mechanisms that read the gradient and bias the extensions. Cytoskeletal
inhibitors eliminate motility and polarity but do not prevent directional
sensing: Signaling events occur in stable crescents facing toward the gra-
dient even in immobilized cells. Polarity is an elongated state where pro-
jections extend mostly from the anterior, even in the absence of an
external cue. Unpolarized cells are equally sensitive along the perimeter
and will form a new front when exposed to a fresh gradient, whereas

polarized cells gradually turn. However, a sufficiently steep gradient
can elicit a new front from the rear of a polarized cell. When cells are
exposed to a uniform increase in chemoattractant they immediately
freeze, then round up or cringe within 30 s, as indicated below. Then they
undergo a series of spreading responses and finally, after several minutes,
resume random migration. Biochemical responses triggered by chemoat-
tractant subside or adapt during continuous stimulation. Some adapting
responses briefly decrease when the stimulus is added, whereas most
transiently increase. The adapting responses are biphasic, corresponding
to the cell behavior. As visualized with a PIP3 biosensor, the initial phase
occurs uniformly around the perimeter and disappears at the cringe. The
second phase consists of a series of patches at the tips of the spreading
cells.
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ported (33, 34). In these instances, the waves appeared to be
“stalled” within the boundary of the cell and may represent a
different structure from the waves that expand to the edge.

As shown in Fig. 1C and Movie S6, uniform addition of
chemoattractant triggered a rapid recruitment of each compo-
nent to the cell surface, followed by an immediate reversal where
the frequency of events briefly dropped below the prestimulus
level. Often, for each of the biosensors, the first transient
response was followed by a series of additional flashes at random
sites. These secondary bursts, which were quite heterogeneous
among cells, undoubtedly correspond to an often-observed sec-
ond phase of biochemically monitored events and to the patches
of PIP3 accumulation detected by epifluorescence microscopy
(see Box 1). We also examined Hspc300-GFP in cells tracking
toward a cAMP-filled micropipette (Movie S7). In this case, most
of the flashes of activity occurred toward the anterior of the cell.
These observations suggest that many, if not all, components of
the signaling network display similar excitable behavior which can
be perturbed in a defined manner by chemoattractants.

A LEGI-Biased Excitable Network Model Was Formulated to Simulate
Cellular Behavior. We formulated a model to test the LEGI-biased

excitable network hypothesis (see Fig. 2A and Box 2). The che-
moattractant is sensed by a LEGI module, representing the che-
moattractant receptor, associated G proteins, and modulators,
that generates a response regulator as previously described. The
response regulator serves as an input for a noise-driven excitable
system, corresponding to the network of downstream biochemical
events that control cytoskeletal activity. The entire excitable
network is modeled simply as interactions of components X and
Y, where X is autocatalytic and drives Y, which provides negative
feedback to X. Stochastic fluctuations (noise) drive X, which
motivates the basal behavior of the network. The response regu-
lator also drives X, which couples the upstream and downstream
modules. The half-times for the rise and fall of the inhibitor in the
LEGI module were chosen to be much longer than those of the
positive and negative feedback loops within the excitable network
(∼2 min versus ∼10 s). Note that the excitable network can
behave independently but the effects of the LEGImodule on final
activity are filtered by the downstream events. A brief outline of
the model is found in Box 2; a formal description and an explana-
tion of its major features are presented in the SI Text. Here we pro-
vide simulations run on themodel and compare them to thewealth
of legacy information of the behavior of chemotactic cells.

Localized Patches of Activity Appear Randomly and Are Synchronized
by the External Stimulus. Fig. 2B and Movies S8 and S9 show two-
dimensional simulations of spontaneous activity and responses
to uniform stimuli. The parameters in the model were chosen
to account for the typical size and duration of an observed patch
of PIP3 accumulation as well as the general features of the bio-
chemical responses to uniform chemoattractant addition. The
patterns of X and Y were similar except that X slightly preceded
and was less diffuse than Y. In the absence of stimulation, initial
points of spontaneous activity appeared and propagated into
patches of various sizes and durations. When a patch expanded
sufficiently and activity at its origin subsided, it appeared as a
propagating wave (see Movie S8). A uniform stimulus generated
a response over the entire field, which shut off rapidly and was
followed by a series of secondary localized clusters of activity (see
Movie S9). The evolution of the patterns varied in each simula-
tion run with the same parameters due to the influence of sto-
chastic noise. The performance of X or Y in the simulations
closely matched that of the biosensors in cells as will be analyzed
in greater detail below.

To facilitate tracking of the temporal and spatial responses
of the model, all subsequent simulations were carried out on a
circular domain and the activity of the simulated cell was repre-
sented as a kymograph of Y. As seen in the kymograph of a cell in
the absence of stimulation, it is clear that patches of activity can
appear simultaneously, either far from each other (Fig. 2C) or
sufficiently close to give the appearance of a single, wider cres-
cent. The patches spread out laterally and in some cases, a smal-
ler secondary increase emerged at the edge of a patch. A uniform
stimulus gave rise to a burst of activity that covered nearly the
entire perimeter (Fig. 2D). This response declined rapidly by
30 s due to the negative feedback loop within the excitable net-
work. A second phase of high activity then appeared, though it
was not as consistent in space as the initial response. The frequency
of patches remained higher than prestimulus levels for a few min-
utes, corresponding to the timescale of the LEGI module. During
this period, increases in activity seen at the edges of patches were
more common. Eventually, the system adapted and the sponta-
neous activity returned completely to the prestimulus level as
the response regulator disappeared.

Similar patterns of spontaneous and stimulated activity ap-
peared in simulations using randomly perturbed model para-
meters (Fig. 2E), though the frequency, sizes, and durations
of the patches varied. To determine the form of the response
of a population of cells, we measured the average level of activity
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Fig. 1. Propagation waves of signaling events and excitability of the
biochemical network. (A) Developed Dictyostelium cells overexpressing
GFP-tagged PHCrac, Raf1-RBD, and Hspc300 were imaged with a TIRF micro-
scope, while undergoing random migration. Imaged regions shown are
roughly 7 × 7 μm. The dynamic nature of these excitable waves is more clearly
demonstrated in the corresponding Movies S1–S3. Time stamps are the num-
ber of seconds since movies started. (B) Synchronization of activity at differ-
ent levels of the signaling network is demonstrated in cells coexpressing RBD-
GFP and LimE-RFP (Left), or PH-GFP and LimE-RFP (Right). In each case, upper
and lower panels show two independent examples (see Movies S4 and S5).
(C) The intensity of Hspc300 in response to sudden application of a micropip-
ette containing 10 μM cAMP at 25 s displays a sharp first peak followed by
broad secondary activities (Movie S6). The lower graph shows the average
intensity plotted over time.
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around the perimeter for 40 cells that had randomly altered mod-
el parameters, and plotted the mean level of activity of X as a
function of time (Fig. 2F). We saw a clear first peak, followed
by a smaller second peak, and the activity returned to basal levels
approximately 5 min after addition of the stimulus. The average
profile was compared with the responses of two individual cells.
In all cases, the first peak was evident, but the averaging of a het-
erogeneous population led to less distinct shutoffs and broader
secondary peaks. Nevertheless, the similar behavior demon-
strated the robustness of the model.

Spontaneous Activity Patches Display Adaptation to Multiple Stimuli.
We next considered the effect of removing a spatially homoge-
neous stimulus from an adapted cell (Fig. 3A). As seen earlier,
after adding a stimulus it took about 5 min for the simulated cell
to adapt and attain a prestimulus level of activity. Thereafter, the
cell sustained this basal behavior until the stimulus was removed.
The removal triggered a period of little or no activity, distinctly
below the basal level. Eventually, about 5 min after removal of
the stimulus, the spontaneous patches of activity reappeared
and were maintained at the prestimulus level.

Because the LEGI module responds on longer timescales than
the excitable network, multiple stimuli should give rise to differ-
ent activity patterns depending on the timescales on which they
are applied. We first subjected the model to a 30 s application of
a stimulus, followed by a short removal (a further 30 s) before
reapplying a persistent stimulus (Fig. 3B). Both stimuli generated
similar, spatially uniform responses; the second was followed by
secondary patches of activity and eventual adaptation to presti-

mulus levels. Changing the duration of the first stimulus to 360 s
gave rise to quite a different behavior. As expected, there was a
biphasic response to the first stimulus, followed by a return to
basal activity and a suppression of basal activity when the stimulus
was removed. Reapplying the stimulus 30 s later instantly miti-
gated the suppression but elicited no response as the system
had now adapted (Fig. 3C). The responsiveness could be recov-
ered by delaying application of the second stimulus for 360 s,
sufficiently long to allow deadaptation to occur (Fig. 3D). Finally,
we showed that the simulated cell responded and adapted repeat-
edly to sequential increments in the stimulus. In this case, succes-
sive increases elicited smaller bursts in activity (Fig. 3E). In
general, the magnitude of the integrated response was propor-
tional to the relative change in the stimulus.

Spontaneous Activity Patches Are Steered in the Direction of a
Chemoattractant Gradient. We next explored the response of the
model to spatial gradients (Fig. 4A). The application of a che-
moattractant gradient caused a sudden nearly equal increase
in stimulus across the cell. Accordingly, it elicited a spatially
uniform response, which disappeared as previously observed
with uniform stimuli. Thereafter, a series of localized patches
appeared with temporal regularity, primarily aligned with the
external gradient. By measuring the average steady-state level
of activity as a function of the angle along the perimeter for
20 cells, we determined that the external gradient was greatly
amplified (Fig. 4B and Fig. S1). We also plotted the response
regulator of the LEGI module which, as previously noted, is
not amplified compared with the external gradient. We then re-

Box 2. The LEGI-Biased Excitable Network Hypothesis As shown
in Fig. 2A, we propose that chemotaxis is mediated by two connected
reaction–diffusion systems, designated LEGI and excitable network.
The LEGI module represents the chemoattractant receptor, associated
G proteins, and modulators. The excitable network represents the down-
stream biochemical responses that control cytoskeletal activity.
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In the LEGI module, a signal (S) generates an excitor (E) and an inhibitor
(I). A response regulator (RR) depends on the balance of E and I. The ex-
citor reflects the local receptor occupancy, whereas the inhibitor depends
more closely on the average level of receptor occupancy. As shown at left,
the excitor changes faster than the inhibitor and so, when cells are ex-
posed to a uniform stimulus, the response regulator rises transiently until
the slower inhibitor catches up. The cells adapt perfectly at the front and
back. The timescale of the inhibitor and response regulator are on the
order ∼2 min. When a gradient is applied, there is an initial response.
However, when it reaches a steady state, the excitor exceeds the inhibitor
at the front of the cell while it is lower at the back. This difference leads
to a response regulator that, relative to basal levels, is persistently higher
at the front and lower at the back.

The response regulator drives an excitable network, a system in which
perturbations can elicit responses that are much greater than the initial
perturbation. Our simplified model of the excitable network consists of
two components. The first, X, is triggered either by change in the LEGI
response regulator or through stochastic noise fluctuations. These small
initial deviations are amplified by an autocatalytic positive feedback loop
where X produces additional X. Changes in X also drive the second com-

ponent, Y, which in turn, provides negative feedback enabling a shutoff
of the network. The diagram below shows two equivalent ways of repre-
senting the dynamics excitable network. On the left are the changes in
each component as a function of time. On the right, in the phase-plane
diagram, the line labeled “trajectory” plots changes in both values at the
same time. The phase-plane diagram also shows “nullclines,” determined
by setting the expressions for the rates of change of X and Y equal to
zero, which helps predict the response of the system to perturbation. Vec-
tor arrows indicate the direction a trajectory must take.

In our model, X and Y are initially at equilibrium (point a). Noise or a
change in the response regulator of the LEGI module alters the amount
of X. If a small increase in X reaches a “threshold,” then positive feedback
causes X to increase greatly (from a to b), forcing a delayed increase in Y
which begins the shutoff of X (from b to c). This continues until X reaches
its minimum (d) and then the system settles to its new equilibrium (e). The
timescale for this response is relatively fast, ∼10 s.
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In the phase-plane diagram, the system equilibrium is the point where
the two nullclines meet (i.e., zero rate of change of X and Y; initially at
point a). The increase in X raises the X nullcline which shifts the equili-
brium to a new point (e). As the system is no longer in equilibrium,
X and Y must change. Due to the positive feedback, X changes greatly
and Y changes slightly, causing the system to move away from the
new equilibrium toward point b. The high level of X leads to an increase
in Y which counteracts X. At point b, X reaches its maximum as it crosses
the new X nullcline. As Y continues to increase to point c, the decrease of
X continues until the trajectory again crosses the X nullcline at point d.
From there, the system settles to its new equilibrium (e).
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peated this simulation with a shallower gradient (approximately
6% versus 19% between the front and back) gradient. The initial
response was quite similar, but the steady-state behavior was less
regular in time and not as aligned with the external gradient
(Fig. 4C). The average level of activity was smaller and broader
than when responding to a steep gradient because the patches of

activity were less frequent and less localized (Fig. 4D and Fig. S1).
Nevertheless, the output of the coupled system is more amplified
than the response regulator alone. Finally, we considered the
effect of a quick shift in the direction of the gradient (Fig. 4E).
After a brief suppression due to transient removal of the stimulus,
changing the location of the gradient redirected the series of
localized activity patches in the direction of the new gradient.

Altering LEGI or the Strengths of the Feedback Loops in the Excitable
Network Produces “Phenotypes.” To determine how the strengths
of different feedback loops in the model affect the temporal
and spatial behavior, we performed a number of simulations
using systematically perturbed systems (Fig. 5 and Fig. S2). We
first considered the effect of decoupling the two modules of
the system, by removing the link between the LEGI system
and the downstream excitable network. In these simulations,
the typical spontaneous patches of activity were seen but they
were unaltered by the external stimulus. When coupling was
reduced by 75%, random bursts of activity continued but there
were weak temporal responses to a stimulus increment and par-
tial spatial restriction of the response to the gradient (Fig. 5B and
Fig. S2B). We then explored the effects of prolonging the time
course of the global inhibitor (i.e., delaying adaptation) within
the LEGI module (Fig. 5C and Fig. S2C). In this altered system,
the initial peak in activity was similar to that in wild type. How-
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neous simulations of X and Y. (C) Kymograph of a one-dimensional simula-
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be seen (e.g., triangles ∼450 and 840 s). (D and E) Response of model to
addition of uniform stimuli denoted by the bar above the kymograph. In E,
the parameters of the excitable network have been perturbed randomly. (F)
Mean (red) level of activity of X around the perimeter of the cell for an ag-
gregate of randomly perturbed cell models (n ¼ 40). Shaded region denotes
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vidual traces of the simulations in D and E, respectively. Vertical lines are 60 s
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ever, the subsequent peaks were long lasting and periodic bursts
of activity along nearly the entire perimeter were seen for an
extended period of time both under spatially uniform and gradi-
ent inputs. In the latter, the periodic responses eventually aligned
themselves with the external gradient.

Changing parameters within the excitable network also gave
rise to distinctive behaviors. When the strength of the negative
feedback loop was reduced, the spontaneous patches of activity
were stronger and longer lasting, and multiple sites along the
perimeter responded simultaneously. The responses to uniform
stimuli were more intense; the secondary peaks were delayed
but broader. These features made the responses appear to be less
aligned with the gradient (Fig. 5D and Fig. S2D). Similar behavior
was seen by increasing the positive feedback strength (Fig. S3). In
contrast, increasing the negative feedback strength made the
initial response smaller and nearly eliminated the secondary re-
sponses. It reduced the intensity of the patches during exposure
to a gradient; however, they remained tightly confined in the
correct direction (Fig. 5E and Fig. S2E). Finally, we halved the
strength of the positive feedback loop in the excitable network.
The response decreased in magnitude as might be expected.
More interestingly, the second peak after the uniform stimulus
disappeared and the response to the gradient was no longer
periodic; rather, it pointed stably, but weakly, along the gradient.

Discussion
TheLEGI-biased excitable network hypothesis incorporatesmany
of the features and surmounts many of the difficulties posed by
previous schemes of chemotaxis. Our formulation of the hypoth-
esis simulates the propagating waves of signaling events seen on
the basal surfaces and the dynamic patches of activity observed
at the tips of pseudopodia in migrating cells. The model accounts
for the kinetically complex responses of wild-type cells, the reac-
tions to compound stimuli, as well as directional sensing of shallow
spatial gradients. Assuming that the patches of activity are corre-
latedwith cellular projections thatmove cells, themodel generates
the dynamic behavior and explains the extraordinary sensitivity of

chemotactic cells. Furthermore, systematic perturbation of the
model parameters gives rise to activities consistent with pheno-
types observed in known classes of mutants.

The output of the model is consistent with the unbiased exten-
sions of pseudopodia displayed by Dictyostelium cells and neutro-
phils prior to stimulus addition, as well as the biphasic responses
to increments in chemoattractant (see Box 1). During the initial
peak, the high activity along the entire perimeter is consistent
with the observed uniform activation of Ras and PI3K. One
would expect pseudopodia to be extended everywhere, but in
reality cells “freeze,” perhaps because cytoskeletal or membrane
components are limited (not modeled here). The rapid shutoff
of activity caused by the negative feedback loop in the excitable
network corresponds to the cringe stage where Ras activity
goes down, PIP3 accumulation disappears, F actin depolymerizes,
and the cells round up. The following period of increased event
frequency matches the observed spreading responses where the
tips of the extensions are labeled with patches of signaling and
cytoskeletal proteins. Finally, the return to random activity
brought about by adaptation of the LEGI module fits with the
resumption of random migration observed during continuous
stimulation. In the model, each successive secondary peak de-
creased in intensity. This result is often observed experimentally
in individual cells, whereas in biochemical measurements on cell
populations, the second phase of response ramps up slowly to a
low peak level (see Box 1) (20). Consistently, when we modeled a

0 300 600 900 1200
Time (s)

180o

0

-180o

A
ng

le

E

0 10 20
Average (A.U)

D
180o

0

-180o

A
ng

le

C

0 10 20
Average (A.U)

B
180o

0

-180o

A
ng

le

A
steep gradient (19%) 

shallow gradient (6%) 

gradient at gradient at θ=0o θ=90o

Fig. 4. Response of the model to applied spatial gradients. (A) As indicated,
a steep spatially graded stimulus centered at 0° was applied at 180 s. (B) The
mean level of activity (red), standard deviation (gray), and the response
regulator (blue) are shown as a function of angle for an aggregate of cells
(n ¼ 20). (C and D) The same simulations were run with a shallower gradient.
(E) In this simulation, the direction of the (steep) gradient was changed from
0° (180–660 s) to 90° (at 670 s). Vertical lines are 60 s apart.

6003000
Time (s)

6003000
Time (s)

180°

0

-180°

A
ng

le

E

180°

0

-180°

A
ng

le

D

180°

0

-180°

A
ng

le

C

180°

0

-180°

A
ng

le

B

180°

0

-180°

A
ng

le

A
uniform stimulus gradient (19%) 

Fig. 5. Response of model to perturbations within the LEGI and excitable
network modules. In these simulations, the nominal model (A) was system-
atically altered and the response to a uniform stimulus (Left) or a steep
spatial gradient (Right) was calculated. (B) Connection between LEGI module
and excitable network reduced by 75%. (C) Time course of the inhibitor in the
LEGI module slowed down by a factor of 10. (D) Negative feedback reduced
by 25%. (E) Negative feedback increased by 25%. The color scheme in each
panel is autoscaled to maximize contrast. The absolute levels of activity can
be seen in Fig. S2, which shows the corresponding aggregate data for multi-
ple (n ¼ 40) spatially uniform simulations. Vertical lines are 60 s apart.

17084 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1011271107 Xiong et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1011271107/-/DCSupplemental/pnas.1011271107_SI.pdf?targetid=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1011271107/-/DCSupplemental/pnas.1011271107_SI.pdf?targetid=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1011271107/-/DCSupplemental/pnas.1011271107_SI.pdf?targetid=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1011271107/-/DCSupplemental/pnas.1011271107_SI.pdf?targetid=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1011271107/-/DCSupplemental/pnas.1011271107_SI.pdf?targetid=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1011271107/-/DCSupplemental/pnas.1011271107_SI.pdf?targetid=SF2


population of cells with a distribution in network parameters, the
second phase did show a more gradual rise due to averaging of
different responses (Fig. 2).

The model successfully accounted for or predicted the cellular
responses to compound temporal stimuli (Fig. 3). First, the model
indicated that, when the response shuts off after the initial peak,
the cells are not adapted. Removal and immediate reapplication
of the same stimulus at this point triggers another response nearly
as large as the first. However, after the series of secondary
responses subside, the cells are adapted and a much longer recov-
ery period is required before the same stimulus can trigger a full
response (13). In recent experiments using a microfluidic device
to rapidly apply and remove stimuli, consistent behavior was
observed for the PIP3 responses in Dictyostelium. Second, the
model generated biphasic responses each time the stimulus
was incremented with the integrated magnitude of each response
roughly equal to the relative change in receptor occupancy as has
been observed experimentally. Third, the model as implemented
predicted that removal of the stimulus from adapted cells should
cause a transient suppression of spontaneous activity because the
LEGI module generates a below-basal response regulator. To our
knowledge, such suppression of basal biochemical activity has not
been reported, although we have noted that cells chemotaxing
toward a micropipette “collapse” when the pipette is lifted.

Importantly, the model explained the ability of the chemoat-
tractant to direct the migration of the cells (Fig. 4). In our simu-
lations the extent of confinement of activity patches to the correct
direction was proportional to the steepness of the gradient.
A strong directional response was observed even when receptor
occupancy across the cell differed by as little as 6%. Furthermore,
because the LEGI module always attains the same basal level at
steady state, amplification is independent of the midpoint of the
gradient and depends only on the steepness, matching a feature
of chemotaxing cells. What is the origin of this extraordinary sen-
sitivity? In a gradient, the response regulator of the LEGI module
deflects above or below the baseline level toward the side of the
cell facing the higher or lower chemoattractant concentration, re-
spectively. However, the difference between the two ends is not
amplified compared with the external gradient (see Box 2, Fig. 4,
and ref. 27). Remarkably, when the excitable network is coupled
to the LEGI module, the extreme amplification of the gradient
falls out naturally. Because the response regulator serves as an
input to an excitable network, the slight deflections above or be-
low the basal level strongly enhance or suppress the spontaneous
activity of the excitable network toward or away from the gradi-
ent, respectively (Fig. 4 B and D). The relationship between the
response regulator and the activity of the LEGI-biased excitable
network can also be seen by plotting both against the external
gradient on the same graph (Fig. S1). Below-basal levels of re-
sponse regulator suppress spontaneous activity, whereas above-
basal levels that cross a threshold enhance the frequency of events.

Our model relies on noise to select the sites where the excita-
ble network is spontaneously triggered. It is reasonable to assume
that such noise can arise from the intrinsic and extrinsic fluctua-
tions inherent in biochemical reactions (35). This implementation
sets the model apart from that of Hecht et al. where foci are fixed
in space but can be triggered at random times (32). Our model
does not require that we select foci locations; instead, foci arise
naturally from the localized fluctuations of the system. This
feature makes it possible for chemoattractants to steer the spon-
taneous activity without further components or assumptions.

We have speculated on the correspondence of elements in the
LEGI-biased excitable network model with components in the
cellular signaling pathways. First, because actin waves propagate
in cells lacking the Gβ-subunit (36), it appears that the chemoat-
tractant receptor and associated G proteins are upstream and not
part of excitable network. We assign these components, along
with an unknown inhibitor that brings about adaptation, to the

upstream LEGI module. Second, we suggest that Ras and PI3K
activations are part of the downstream excitable network because
they occur spontaneously in patches in unstimulated cells and
display biphasic responses to increments in chemoattractant.
Furthermore, we propose that all of the front and “back” events
triggered by chemoattractants are part of the excitable network
(see Box 1). It is expected that the front and back events will fluc-
tuate 180° out of phase. Indeed, wave-like association of PTEN
with the membrane, in opposition to PIP3 accumulation, has been
observed (37). Further assignment of the components of the
excitable system awaits the development of biosensors to observe
these events in cells. Two recent studies, carried out in growth stage
Dictyostelium cells, demonstrated that PIP3 accumulation dis-
played wave-like behavior (33, 34). Surprisingly, in these studies
the PIP3 and actin waves appeared to be out of phase. As reported,
most often we observe these front events to be colocalized on
expanding waves at the edge of the cell, although we have noted
a displacement of the two markers associated with unusual
structures.

Perturbations to the parameters of the LEGI-biased excitable
network model led to important insights into the phenotypes of
known classes of mutants (Fig. 5). Reducing the output of the
LEGI module decreased both the response to uniform stimuli
and impaired directional sensing of spatial gradients. Numerous
cell lines carrying point mutations in chemoattractant receptors
or G-protein subunits show weakened biochemical responses
and poor chemotaxis and likely correspond to this case (38).
The dramatic increases in the secondary oscillatory responses
of the excitable network and delayed appearance of directional
sensing obtained by slowing the LEGI inhibitor are reminiscent
of the behavior of cells such as fibroblasts which adapt slowly,
display prolonged responses to growth factors, and sense the
absolute, rather than the relative, concentration of the gradient
(39). To our knowledge, no variants of Dictyostelium or neutro-
phils have been isolated that display such nonadaptive behavior
that would correspond to a slowing of inhibition.

Turning to the downstream excitable network, decreasing the
negative feedback loop greatly enhanced the sizes and durations
of the activity patches and the secondary responses, and strongly
interfered with gradient sensing. This behavior mimicked that
of cells lacking NF1, a GTPase activating protein for RasG, as
well as cells expressing the constitutively active RasCQ62L which
display excessive phosphorylation of PKB substrates (40–42).
These mutants extend multiple extraneous pseudopodia simulta-
neously in the absence and presence of chemoattractant and are
extremely defective in chemotaxis. Thus, the negative feedback
loop may act to curtail the activation of the Ras proteins. Cells
lacking PTEN, a negative regulator of PIP3, also display a similar
phenotype, which may indicate that PIP3 is part of the positive
feedback loop. Indeed, multiple reports in neutrophils indicate
that PIP3 is part of a positive feedback loop that plays a role
in polarity. Increasing the negative feedback loop, or partially
reducing the positive feedback, decreased the frequency and size
of the spontaneous patches of activity. With a uniform stimulus,
the first peak was smaller and secondary peaks were essentially
absent. Interestingly, the responses to the gradient, although
weaker than the “wild-type” system, were more intense and fre-
quent than in the absence of the gradient and strongly aligned in
the correct direction. This result might be expected if, as noted
above, PIP3 is part of the positive feedback loop. Cells treated
with PI3K inhibitors display no random motility but are able
to track toward a steep gradient (20). When the gradient is ap-
plied to cells with increased negative or reduced positive feed-
back, the constant input from the response regulator at the
front of the cell may be sufficient to enhance directed activity.
Further decreasing the positive feedback loop virtually elimi-
nated the spontaneous activity of the system but the model still
displayed directional sensing. This case is reminiscent of cells
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treated with Latrunculin A which largely lose spontaneous activ-
ity but retain signaling responses to uniform stimuli and direct
stable crescents of front (i.e., RBD-GFP and PH-GFP) or back
(i.e., PTEN membrane association) events, respectively, toward
or away from gradients.

In general, perturbations to the model are consistent with
the effects of genetic and pharmacological interventions observed
experimentally and provide several important insights. First,
partial defects that slow the inhibitor within the upstream LEGI
module may not prevent the rapid shutoff of the response or
eliminate directional sensing. Second, all the perturbations within
the excitable network affect prestimulus activity, responses to
uniform stimuli, as well as directional sensing. Thus, mutations
which separately alter directional sensing without affecting mo-
tility are predicted to be rare, consistent with experience. The
previously unexplained correlation among prestimulus activity,
the magnitude of the secondary responses to uniform stimuli,
and chemotaxis is a natural consequence of the model.

The LEGI-biased excitable network model quite accurately
captures the general behavior of chemotactic cells though many
challenges remain for future studies. First, it is not understood
exactly how or which activity patches lead to pseudopodia.
Although any patch might potentially generate a protrusion,
obvious mechanical constraints on the basal surface do not com-
pletely eliminate the signaling responses, and additionally, not all
cytoskeletal responses are accompanied by signaling responses
of equal strength. These observations suggest that the compo-
nents of the excitable network are not obligatorily linked. The
excitable networkmay contain several parallel positive or negative

feedback loops, which we have greatly simplified here. Second,
our current scheme does not account for the stable polarity
which causes some chemotactic cells to turn, rather than establish
a new front, toward a new gradient. It is evident to us that an
additional slow-acting positive feedback loop could bring polarity
to our scheme; this is currently under investigation. Third, the
molecular nature of the LEGI inhibitor and the mechanism by
which it limits activity of the receptor/G-protein system are un-
known. Nevertheless, the model allows us to understand how
newly appreciated excitable behavior can be regulated by external
cues and satisfactorily accounts for most of the responses of
chemotactic cells to spatial and temporal stimuli. This under-
standing provides a framework for motivating experimentation
and interpreting new observations as they emerge.

Materials and Methods
Wild-type Dictyostelium cells (AX2 background) were transformed with
GFP-tagged PHCrac, Raf1-RBD, Hspc300, or LimE-RFP by electroporation and
cultured axenically in HL5 medium containing G418 (20 μg∕mL) or hygromy-
cin (50 μg∕mL) at 22 °C. TIRFM was carried out in an Olympus IX71 inverted
microscope illuminated by a Kr/Ar laser source. Further details can be found
in SI Text.
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SI Model
The model contains two connected reaction–diffusion systems.
The first one describes the local-excitation, global-inhibition
(LEGI) mechanism (S1), whose response regulates the second
one, describing an excitable system.

Local-Excitation, Global-Inhibition Mechanism. The LEGI mechan-
ism involves three interacting processes (Fig. S4A). An external
signal, which represents the local level of receptor occupancy
(S) drives two of them: a fast, (E) and a slow, global (diffusible)
inhibitor (I). These two control a response regulator, which can
be active, R, or not. We assume that the total concentration of
the response regulator is constant (RT). We thus have that the
inactive response regulator component is given by RT − R. The
system equations can be written as

LEGI

8>>>>><
>>>>>:

∂E
∂t

¼ −k−eEþ keS;

∂I
∂t

¼ −k−iIþ kiSþDI∇2I;

∂R
∂t

¼ −k−rRI þ krEðRT −RÞ:

[S1]

This model can explain qualitatively adaptation and spatial
sensing seen in Dictyostelium (S2).

Excitable System. We considered various models for excitable
systems. We settled on a two-component system that is qualita-
tively similar to the FitzHugh–Nagumo model, which is itself a
simplification of the Hodgkin–Huxley model of action potentials
(S3, S4). This model is of the form of a classical activator-inhi-
bitor model (S5). Component X acts as the activator: It is auto-
catalytic (it has strong positive feedback), and also activates the
downstream component—we refer to this as the feedforward
loop. The Y component provides negative feedback to X
(Fig. S4B).

The equations for the excitable reaction–diffusion system are

excitable

8>>>><
>>>>:

∂X
∂t

¼ DX∇2X þ α

�ðaþ 1ÞX2n

aþX2n −X − βY
�
þU

∂Y
∂t

¼DY∇2Y þ αϵðγX −Y Þ
[S2]

The coefficients a, α, β, γ, and ε are constants, 2n is a Hill coeffi-
cient representing the degree of nonlinearity in the positive feed-
back loop, and U is the input to the excitable system. We assume
that it represents the sum of three processes: a basal level of
activation (B), the contribution from the LEGI mechanism
(R), and stochastic fluctuations (N):

U ¼ Bþ λRþN:

Note that in this subsystem both components can diffuse spatially,
with diffusion coefficients DX and DY , respectively.

We analyze the possible behavior of the excitable system by
looking at the steady states of the system in the spatially homo-
genous case (that is, when DX ¼ DY ¼ 0) and assuming basal
level of activation (U ¼ B). In the phase plane, the nullcline
of Y is a line crossing the origin, given by Y ¼ γX . The nullcline
of X is nonlinear, a curve given by

Y ¼ 1

αβ
U þ 1

β

�ðaþ 1ÞX2n

aþX2n −X
�
:

The curve satisfies

lim
X→−∞

Y ¼∞; and lim
X→∞

Y ¼ −∞;

which implies that it must have at least one zero crossing. To
achieve an excitable system, we would like to have multiple
crossings. If the input, U, is zero, these are the solutions to
the equation

ðaþ 1ÞX2n

aþX2n −X ¼ 0;

and find that

XðX − 1Þ
�
X2n−1 − a ∑

2n−2

k¼0

Xk

�
¼ 0.

Clearly, roots exist at X ¼ 0 and X ¼ 1. We would like to have an
additional root, say at ~X , satisfying 0 < ~X < 1. We can achieve
this by choosing a in order to satisfy

~X2n−1 − a ∑
2n−2

k¼0

~Xk ¼ 0.

Because

∑
2n−2

k¼0

~Xk ¼
~X2n−1 − 1

~X − 1
;

it follows that

a¼
~X2n−1ð ~X − 1Þ
~X2n−1 − 1

: [S3]

Bifurcation Analysis of the Excitable System. For simplicity, we next
fix the values of α and β, and hence the shape of the X nullcline,
and consider the influence from γ, the slope of the Y nullcline,
and U, the external input, to the system behavior. Clearly, these
parameters determine the possible number of steady states and
their stabilities of the system. As shown in Fig. S5, there are four
qualitatively different bifurcation cases.

When γ is small (γ ¼ 0.01 in Fig. S5A), two thresholds U1 and
U2 (U1 < U2) exist such that when U < U1 or U > U2, there is
only one steady state, X ss, which is stable. When U1 < U < U2,
there are three steady states, X ss1 < X ss2 < X ss3, in which X ss2 is
a saddle node, while the other two are stable. Conversely, when γ
is sufficiently large (γ ¼ 0.4 in Fig. S5D), there is only one steady
state. Two thresholds U1 and U2 (U1 < U2) exist, such that
when U is in between the two, the unique steady state is unstable
(an unstable spiral point or an unstable node), whereas whenU <
U1 or U > U2, the steady state is stable. Lastly, when γ is not
between either of these two extremes (γ ¼ 0.18 and 0.2143 in
Fig. S5 B and C), two thresholds U1 and U2 (U1 < U2) still exist,
such that when U < U1 or U > U2, there is only one steady
state, which is stable. However, when U1 < U < U2 and thus
the system has three steady states, they may be (i) one stable,
one saddle point, and one unstable spiral point or unstable node
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(Fig. S5B); or (ii) two unstable spiral points or unstable nodes,
and one saddle point (Fig. S5C).

In our simulations, the value of γ was selected by parameter
optimization (see below) and the resultant system was of the form
of Fig. S5C. We discuss the excitability of the system for a fixed
γ ¼ 0.2143 in the spatially homogenous case.

Excitability. As seen above, when γ is fixed, the number of steady
states and their stability properties depend on U. It follows that
the excitability of the system is determined by U. We consider
three cases of excitability corresponding to different ranges of
U when γ ¼ 0.2143 (Fig. S6).

When U is small, such that either there is only one steady state
X ss which is small and stable, or three steady states X ss1 < X ss2 <
X ss3 coexist but only X ss1 is stable, the excitability threshold is
decided by the trajectory approaching the local minimum of the
X nullcline (the shaded region in Fig. S6A) to the left of the local
minimum, and the X nullcline itself on the right. Once a trajec-
tory of the system starts from the region under the threshold, it
is forced to move further to the right before finally comes back
to the stable steady state (solid black dot). Note that when U
increases, as long as the stable steady state still exists, both the
blue line and the X nullcline will move up, thus the system will
be more and more excitable.

When U increases to the point where the system has three
unstable steady states (Fig. S5C), the empty diamond represents
a saddle point, and the two empty circles represent the unstable
node or spiral point. Trajectories in this case converge to a limit
cycle and the behavior will be oscillatory (Fig. S6B).

Finally, when U is sufficiently large so that a single stable, stea-
dy state exists, or three steady states X ss1 < X ss2 < X ss3 coexist
but only X ss3 is stable, the excitability threshold is decided by
the trajectory approaching the local maximum of the X nullcline
(the shaded region in Fig. S6C) to the right of the local maximum,
and the X nullcline itself on the left. Once a trajectory of the
system starts from the region over the threshold, it is forced to
move further to the left before finally comes back to the stable
steady state (solid black dot). Note that in this case, when U
increases further, the region of excitability becomes smaller.

Stochastic Simulations. When considering molecular noise and
disturbance either relayed from the upstream LEGI system or
coming from outside, we model the external perturbation to
the excitable system as a Wiener process, which represents the
integral of a Gaussian white noise process at each time step.
The excitable system, originally described by partial differential
equations (Eq. S2), can now be written as stochastic differential
equations in Itô form (S6)

dXt ¼
�
DX∇2Xt þ α

�ðaþ 1ÞX2n
t

aþX2n
t

−Xt − βY t

�
þUt

�
dtþ σdWt

dY t ¼ ½DY∇2Y t þ αϵðγXt −Y tÞ�dt

with

Ut ¼ Bþ λRt:

Note that the noise term is absent in Ut. It is given by σdWt,
where Wt satisfies that

1. W 0 ¼ 0;
2. Wt are independent increments;
3. Wt −Ws ∼Nð0;t − sÞ for 0 ≤ s < t.

Note that, unless the response to the LEGI system stays
constant and the noise is identically equal to zero, the input is
changing continuously. Furthermore, with the existence of spatial
diffusions of both components, the thresholds of input to gener-

ate qualitatively distinct system behaviors still exist, but may shift
away from their values in the homogeneous case.

SI Parameters
Between the LEGI and excitable subsystems, there are more than
10 parameters in the equations. They may play different roles in
the spatial and/or temporal patterns of dependent variables in
one or both of the two systems. In this section, we describe
the procedure used to obtain the parameters used in the simu-
lations.

Excitable System. The excitable system alone should recreate the
observed behavior of unstimulated cells. In the model, this trans-
lates to the special case where Ut ≡ Bþ Rss for all t, where Rss is
the basal level of activity in the LEGI model (see below). Note
that the stochastic simulation adds the noise directly. It follows
that λ can be ignored. The other eight parameters (α, β, γ, ε, DX ,
DY , B, and σ) determine the spatial and temporal behavior. To
reduce the parameter space, we fix a by using a constant
~X ¼ 0.1, and letting n ¼ 1.
From experimental observations, we first define the “target”

behavior as follows:

1. Patch signals are observed 50% of the time.
2. Most of the time, only one patch is present.
3. A patch is generated once every ∼30 s.
4. A patch lasts ∼30 s.
5. The spatial width of a patch is ∼30°.

To find a parameter set that matched these requirements, we
quantify the pattern of the patch signals on a cell boundary using
the following characteristics:

1. Total signal ratio: defined as the total patch signal averaged
over space and time divided by the maximal amplitude of
the signals.

2. Firing time ratio: defined as the ratio of firing time to the
total time.

3. Firing spatial width: defined as the fraction of the average
width of a single patch occupied on cell boundary.

4. Total width ratio at a given time: defined as the average total
width of patch(es) occupied on cell boundary at any given
time point.

5. Firing time dependency: defined as the average duration of
a patch staying on the boundary.

6. Firing spatial dependency: defined as the average width a
patch propagates around the boundary.

To compare the behavior from a simulation to the target, we
define cost functions (Fig. S7) for each of the above criteria, and
average them to get the final score for each simulation. Because
of the inherent stochasticity of the model, even simulations with
an identical parameter set will produce slightly different beha-
vior. Thus, we run a number of simulations for each parameter
set (at least 10), and average the individual scores to represent the
expected score using the specific parameter set. A MATLAB
(Mathworks) function fminsearch is used to perform the
high-dimensional nonlinear optimization.

Combined LEGI-Biased Excitable Network System.When S is spatially
homogeneous, the concentrations of E and I increase from zero
to their final value with a rate exponentially decreasing with time,
with time constants k−e and k−i, respectively. The difference
between them generates the transient response of R, whose stea-
dy-state level can be derived from Eq. S1 as

Rss ¼
Ess∕Iss

k−r∕kr þEss∕Iss
RT
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where

Ess ¼
ke
k−e

S; and Iss ¼
ki
k−i

S:

For simplicity, for most of simulations, we set the ratios
between production and degradation rates of both E and I to
be constant, and define only three parameters, KLEGI ¼ k−e,
the overall speed of the system; rI ¼ k−i∕k−e, the ratio between
the speeds of inhibition and excitation processes; and rRp

¼
k−r∕kr , the ratio between degradation and production rates of
the response, R.

Spatially Homogeneous Response. Because the basal behavior of
the step response is the appearance of random patches, we now
fix the values of the eight parameters optimized in the previous
case. The other four, λ, KLEGI, rI , and rRp, need to be decided,
according to the target behavior in step response. Themain obser-
vations here are based on the Western blot analysis data, which
give the biochemical quantifications averaged over a large group
of cells. Thus, we describe the averaged target behavior as follows:

1. A sharp increase of response appears within seconds, reaches
the peak (the first peak), and subsides fast at 30 s after the
stimulation.

2. Another broader but smaller rise of response appears and
reaches the peak (the second peak).

3. The second peak subsides more slowly and returns back to the
basal level ∼240 s after the stimulation.

To quantify the averaged behavior given a specific parameter
set, we first integrate along cell boundary to get the time course
of total signals for each cell, and repeat the simulation with the
same parameters for ten times. An averaged time course is then
acquired for this parameter set, and the times and heights of the
two peak can be found by analyzing this time series. These are
compared to the target behavior to decide the candidate para-
meter set.

Gradient Sensing. The unstimulated and spatially homogeneous
simulations specify all the parameters of the system. However,
we found that several sets of LEGI parameters can give rise to
similar spatially homogeneous stimulus responses. Simulation
of the response to a spatial gradient was used to select amongst
these. In particular, parameters were chosen so that most of the
patches appear near the front of the cell when subjected to a
steep (19%) gradient, and the probability that a patch is found
at the front is close to one. Thus, the steady-state LEGI response
at the front needs to be close to the peak of step response, to
make sure that a firing can almost surely happen all the time.
On the other hand, the steady-state LEGI response at the back
needs to be low enough, to ensure that any patch is unlikely to
appear there.

SI Model Implementation
The model and all simulations are implemented using MATLAB.
Spatial diffusion terms, which contain the second derivatives, are
approximated by central differences in space, either in one or two
dimensions; and by doing that, the partial differential equations

are converted to ordinary differential equations (ODEs). The
LEGI mechanism is simulated using MATLAB ODE solver
ode45, and the excitable network is realized with the aid of a
free SDE toolbox for MATLAB: (http://www.maths.dur.ac.uk/
users/umberto.picchini/). The time step for the discretization
of both systems is set to 0.1 s.

For 1D simulations, the cell boundary is represented by the
perimeter of a circle of diameter 100 pixels, thus system behavior
is simulated on all 314 points on the boundary. For 2D simula-
tions, the diameter of the cell is set to 50 pixels, thus the simula-
tion is run on 1,961 points at each time step.

In the gradient simulations, the imposed gradient is found
using the steady-state diffusion equation with radial symmetry:

∂S
∂t

¼ ∇2S¼D
r
∂
∂r

�
r
∂S
∂r

�

with boundary conditions

Sðrn;tÞ ¼ S0; Sðr∞;tÞ ¼ 0;

where rn is the radius of the needle and r∞ is a big distance far
away where the concentration is assumed to be zero. The steady-
state concentration is

SðrÞ ¼ S0
ln r∞ − ln r
ln r∞ − ln rn

:

SI Materials and Methods
Preparation of Cells. Wild-type Dictyostelium cells (AX2 back-
ground) were transformed with GFP-tagged PHCrac, Raf1-
RBD, Hspc300, or LimE-RFP by electroporation and cultured
axenically in HL5 medium containing G418 (20 μg∕mL) or
hygromycin (50 μg∕mL) at 22 °C. Cells were developed prior
to microscopy experiments by washing and resuspension in devel-
opment buffer (5 mM Na2HPO4, 5 mM KH2PO4, 2 mMMgSO4,
and 0.2 mM CaCl2) at a density of 2 × 107 cells∕mL, shaking at
110 rpm at room temperature for an hour, and pulsing with
50 nM cAMP every 6 min for 4–5 h while shaking. Cells were
transferred to Lab-TekII chamber slides (Thermo Scientific)
and allowed to settle for 5–10 min.

Microscopy. TIRFM was carried out in an Olympus IX71 inverted
microscope illuminated by a Kr/Ar laser source. Images were ac-
quired by a Photometrics Cascade 512B intensified CCD camera
controlled by MetaMorph software (UCI). A Dual-View system
(Optical Insights, LLC) was used for simultaneous imaging of
GFP and RFP fluorescence in doubly labeled cells. For cAMP
stimulation, a micropipette (Femtotips, Eppendorf) filled with
10 μM cAMP was attached to FemtoJet Microinjector (Eppen-
dorf) controlled by micromanipulator (Eppendorf, Narushige).
Stimulation was initiated by suddenly bringing the micropipette
in close proximity to the imaged cells, with continuous injection at
a compensation pressure of 60–70 hPa. Images were processed
and analyzed with the software ImageJ (National Institutes of
Health).
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Fig. S1. Dependence of the response regulator and the activity of the LEGI-biased excitable network on the stimulus. The output of the LEGI module alone
(RR) and the activity of the entire system (Y) were calculated as a function of the stimulus at gradient steepnesses of 6% and 19%. Values were normalized to
their respective means. The sloped dotted line indicates a response that matches the cAMP gradient (i.e., no amplification).
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Movie S1. Total internal reflection fluorescence images of nonstimulated AX2 cells expressing RBD-GFP.

Movie S1 (AVI)

Movie S2. Total internal reflection fluorescence images of nonstimulated AX2 cells expressing PH-GFP.

Movie S2 (AVI)

Movie S3. Total internal reflection fluorescence images of nonstimulated AX2 cells expressing Hspc300-GFP.

Movie S3 (AVI)
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Movie S4. Total internal reflection fluorescence images of AX2 cells coexpressing RBD-GFP and LimE-RFP.

Movie S4 (AVI)

Movie S5. Total internal reflection fluorescence images of Ax2 cells coexpressing PH-GFP and LimE-RFP.

Movie S5 (AVI)

Movie S6. Total internal reflection fluorescence images of AX2 cells expressing Hspc300-GFP stimulated by cAMP at 25 s.

Movie S6 (AVI)
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Movie S7. Total internal reflection fluorescence images of AX2 cells expressing Hspc300-GFP chemotaxing toward a micropipette at the bottom of the field.

Movie S7 (AVI)

Movie S8. A two-dimensional simulation of X (Left) and Y (Right) in the model shows spontaneous patches ranging from limited flashes to expanding waves
in an unstimulated cell.

Movie S8 (AVI)

Movie S9. A two-dimensional simulation of X (Left) and Y (Right) in themodel shows an initial global response followed by a series of localized flashes in a cell
responding to spatially uniform stimulus applied at 100 s.

Movie S9 (AVI)

Table S1. Table of nominal model parameters

Parameter
Value

Parameter
Value

Parameter
Value

(1D) (2D) (1D) (2D) (1D) (2D)

k−e KLEGI KLEGI KLEGI 0.5 0.5 ε 0.038 0.038
ke k−e k−e rRp

0.6 0.6 B −2.563 −2.663
k−i rIk−e rIk−e rI 0.2 0.2 λ 2 2
ki k−i k−i α 2.870 2.870 σ 0.102 0.204
k−r krrRp

krrRp
β 3.711 3.711 DX 1.864 0.932

kr 0.1 0.1 γ 0.214 0.214 DY 4.773 0.477
RT 2 2

The inhibitor’s diffusion coefficient was chosen sufficiently large so that inhibition reflected the average
global stimulus.
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