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Curcumin, a diphenolic compound that 
gives the spice turmeric its characteris-
tic yellow color, has an extensive history 
of use as a natural remedy in Ayurvedic 
and ancient Chinese medicine.1-3 Indeed, 
modern science has now confirmed that 
curcumin possesses diverse pharmaco-
logic activities, including anticancer effi-
cacy, when used as a single agent and/or 
in combination with conventional radio-
chemotherapy protocols. Accumulating 
circumstantial evidence suggests that cur-
cumin’s anticancer effects occur through 
interaction with multiple molecular tar-
gets and signaling pathways,3 although 
experimental evidence for a direct inter-
action between curcumin and most of 
these targets has not yet been established. 
Evidence from preclinical and phase I/II 
clinical trials have demonstrated that cur-
cumin is relatively safe even at relatively 
high doses.1

The major remaining roadblock to the 
clinical usefulness of curcumin is poor 
bioavailability due to solubility limita-
tions, intestinal metabolism and rapid 
clearance on first pass through the liver.1,3 
This problem of limited bioavailability is 
not novel among cancer therapeutics.4,5 A 
range of strategies has been suggested to 
improve drug efficacy, including active 
targeting through peptide conjugation, 
PEGylation and perhaps most notably, 
encapsulation.4,6 Encapsulation of thera-
peutics provides routes to improved bio-
distribution and bioavailability through 
solubilization of poorly-soluble drugs and 
protection of the cargo from destructive 
elements in vivo. Many vehicles have been 
developed for encapsulation and delivery 
of therapeutics, including solid nanopar-
ticles, micelles, lipid and polymer vesicles 
(polymersomes) and nanohydrogels.7-11 
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The type of cargo to be delivered (i.e., 
small molecule vs. protein or hydrophilic 
vs. hydrophobic) determines which vehi-
cle is most ideal.

Since curcumin is a drug candidate 
limited by both poor water solubility 
and rapid biological degradation, a car-
rier that can solvate and protect hydro-
phobic materials is required. Numerous 
such nano materials have been developed 
ranging from liposomal formulations to 
solid nanoparticles to nanogels.12 In the 
work presented by Lim and coworkers, 
a cross-linked, micelle-forming polymer 
that encapsulates curcumin in its hydro-
phobic core (NanoCurc) is utilized.13,14 
The copolymer of N-isopropylacrylamide 
(NiPAAm), N-vinyl-2-pyrrolidone and 
poly(ethylene glycol) acrylate spontane-
ously forms micelles when synthesized in 
water. The hydrophobic NiPAAm forms 
the core of the micelle while the pyrrol-
idone and PEG stabilize the emulsion in 
aqueous media. The use of a co-organic 
solvent allows for quantitative loading 
of the curcumin into the nanoparticle, 
minimizing drug loss during formula-
tion. Additionally, this system provides a 
route to protect the curcumin from serum 
proteins by burying it in the center of 
the micelle while the PEG shell provides 
stealth character to the formulation.

While encapsulating curcumin and 
other neutraceuticals is seen as a way to 
increase plasma and tissue concentrations 
of curcumin, the choice of nanomate-
rial used in these formulations must be 
amenable to eventual release of the com-
pound at the target tissue. Earlier work 
in a mouse model of pancreatic cancer 
demonstrated inhibition of tumor growth 
when Nanocurc was administered paren-
tally.15 However, with neurological cancers 
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affected by curcumin is key to its even-
tual clinical use, then identifying targets 
that are directly modified by curcumin 
is absolutely essential. The direct inter-
action between curcumin and biological 
macromolecules occurs via nucleophillic 
addition across one of the two unsatu-
rated carbonyl bonds in the “alkene 
linker” portion of the curcumin mol-
ecule (Michael addition). Proteins with 
substrate accessible reduced cysteine and 
selonocyteine residues are therefore likely 
direct targets.19 For example, curcumin 
has been shown to modify the penulti-
mate selenocysteine residue in TxnRd1 by 
mass spectrophotometric analysis of pro-
teolytic fragments.19 Moreover covalent 
binding of curcumin to the selenocysteine 
residue in TxnRd1 is sufficient to convert 
the activity of this key redox modulator 
from anti- to pro-oxidant.20,21 In addi-
tion to demonstrating a direct interaction 
between curcumin and a potential molec-
ular target, molecular biology techniques 
must then be applied to validate whether 
the target has any role in the observed 
response. By knocking down protein 
expression in squamous cell carcinoma 
cell lines, we demonstrated that sensitiv-
ity of these cells to curcumin depended 
on elevated expression of TxnRd1.22 
Similar rigorous validation should be per-
formed with all putative molecular targets 
of curcumin.

Ultimately, proof of the potential use-
fulness of Nanocurc in treating brain 
cancers awaits in vivo studies in preclini-
cal rodent models and subsequently in 
human clinical trials. Curcumin itself 
has shown potential as a radiation and 
chemosensitizer;23 it is highly likely that 
Nanocurc’s usefulness in treating brain 
cancer will be as an adjuvant to current 
standard of care radio-chemotherapy pro-
tocols.24 Therefore as the evaluation of 
Nanocurc and other similar formulations 
moves forward it is essential to consider 
combined modality studies as part of 
these studies.
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the blood brain barrier represents another 
potential barrier to Nanocurc’s thera-
peutic effectiveness. While the paper by 
Lim et al. examines Nanocurc’s effects 
in cultured glioma and medulloblastoma 
cell lines, it does not directly address the 
ability of Nanocurc to pass through the 
blood brain barrier.13 However, a recent 
report evaluating the therapeutic poten-
tial of Nanocurc in an animal model of 
Alzheimer’s disease (from some of the 
same authors) did demonstrate significant 
accumulation of curcumin in brain tissues 
when administered via I.P. injection,16 
suggesting that Nanocurc could be useful 
in treating neurological cancers.

As pointed out by Lim et al.13 under-
standing the molecular targets responsible 
for the Nanocurc’s actions is crucial to 
successfully implementing its use in the 
clinical setting. So what are the molecu-
lar targets that account for the enhanced 
sensitivity of glioma and medulloblas-
toma cell lines? The authors demonstrate 
that Nanocurc, much like free curcumin, 
affects multiple, diverse target molecules.1-3 
Of particular interest is their demonstra-
tion that CD133, a prognostic marker of 
cancer stem cells, is downregulated by 
Nanocurc treatment in a dose and time 
dependent fashion.13 These data suggest 
that curcumin might decrease clonogenic 
potential by selectively targeting cancer 
stem cells. Alternately these effects could 
be from downregulation of CD133 pro-
tein levels. These two hypotheses will need 
to be tested more closely, and it will need 
to be determined by an in vivo model, 
whether Nanocurc’s ability to target can-
cer stem cells will limit growth of tumor 
xenografts.

Lim et al. also observed significant 
downregulation of IGF-1 receptor on 
microarray analysis following Nanocurc 
treatment.13 These results were confirmed 
by western blot analysis. Deregulation 
of IGF receptor signaling was previously 
reported to occur in breast cancer cells 
following curcumin treatment.17,18 While 
it is interesting that this pathway is down-
regulated by curcumin in diverse sub-
types of cancer, there is no direct evidence 
provided to suggest that IGF receptor sig-
naling mediates the response of glioma 
and meduloblastoma cells to curcumin. 
Indeed, if understanding the pathways 
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