
Instructions for applying CODA 

Last updated by Ashley Kiemen, December 2023 

 

This document gives basic usage instructions to create 3D tissue and cellular labelled datasets from serial histological 

images using CODA, as described in Kiemen et al, “CODA: quantitative 3D reconstruction of large tissues at cellular 

resolution”, (2022), Nature Methods. 

 

You will need the following programs installed: 

MATLAB (including toolboxes such as the image processing toolbox, deep learning toolbox, and the resnet50 model), Aperio ImageScope, FIJI ImageJ 

Codes are available at the following GitHub: 

https://github.com/ashleylk/CODA/tree/main/update%2012-13-2023 

Here, we discuss application to a sample dataset “lungs”, containing 150 serial histological images. Download the sample 

dataset (serial images and sample annotations) here: 

https://drive.google.com/drive/folders/1K-wY_ArVGbEhebQD4AjOeERwx6-4Fw3G?usp=sharing 

Images are .ndpi format and were scanned at 20x magnification (approximately 0.5 micron / pixel resolution), spaced 10 

micron apart. The images are saved in a hypothetical folder: 

pth='\\Users\Ashley\Documents\lungs'; 

 

Sections: (for the most part, these must be followed in order) 

Section 1. Notes on Filenames 

Section 2. Create downsampled copies of digitized whole slide images 

Section 3. Calculate registration on low-resolution tif images 

Section 4. Deep learning multi-labelling of tissue structures using training on manual annotations 

Section 5. Register the deep learning labelled images 

Section 6. Construct 3D tissue matrix 

Section 7. Nuclear coordinate generation 

Section 8. Register the nuclear coordinates 

Section 9. Construct 3D cell matrix 

Section 10: Notes on visualization 

Section 11: Notes on quantification 

Section 12: Shorthand for calling functions 

 

  

https://github.com/ashleylk/CODA/tree/main/update%2012-13-2023
https://drive.google.com/drive/folders/1K-wY_ArVGbEhebQD4AjOeERwx6-4Fw3G?usp=sharing
file://///Users/Ashley/Documents/lungs


Section 1. Notes on Filenames 

Filenames for each image should be created such that tissue sections are read consecutively by Matlab. Therefore, 

include zero-padding in numerical indices. 

CORRECT FILENAMES: 

lungs_001.ndpi 

lungs_003.ndpi 

… 

lungs_011.ndpi 

INCORRECT FILENAMES (no zero padding): 

lungs_1.ndpi 

lungs_3.ndpi 

… 

lungs_11.ndpi 

 

  



Section 2. Create downsampled copies of high-resolution images 

Create downsampled tif images from the high-resolution .ndpi files. There are several ways to do this.  

1. The function create_downsampled_tif_images will create downsampled copies of the .ndpi files by directly 

loading each high-resolution images in tiles and down sampling it to the desired pixel resolutions.  

First, decide the resolution of the images you want to create. Here, we create images of 1 micron / pixel, 2 

microns / pixel, and 10 micron / pixel resolution: 

 ds=[1 2 10]; 

Next, decide on the name of the output folders for each of the downsampled images you create. Here, we will 

save the images downsampled to 1 micron / pixel in a folder named “10x”, the images downsampled to 2 micron 

/ pixel in a folder named “5x,” and the images downsampled to 10 micron / pixel in a folder named “1x.” 

 subfolders=["10x" "5x" "1x"]; 

Finally, call the function: 

create_downsampled_tif_images(pth,ds,subfolders); 

Using this function, you will make two subfolders within the original folder containing the .ndpi images. One 

subfolder named “10x” containing the 20x images downsampled by a factor of 2. The other subfolder named 

“1x” containing the 20x images downsampled by a factor of 20. Most calculations will be performed on these tif 

images. Note: here we use 10x and 1x for example, but other resolutions could be created as desired. 

pth10x=[pth,'10x']; 

pth1x=[pth,'1x']; 

**Note: If this code fails due to memory constraints on your computer, try python Openslide. 

 

Sample folders in Windows explorer: 

  

 

  



Section 3. Calculate registration on low-resolution tissue images 

Calculate nonlinear image registration on the low-resolution tif images. For most images, a resolution of 1x should be 

sufficient. If the 1x results are not well registered, or registration of small tissues (such as needle biopsies) is desired, try 

calculating registration at a higher resolution such as 2x or 4x. 

1. The quality of the registration depends on first calculating the tissue space in each image, as this allows removal 

of noise (shadows and lines that aren’t tissue within the whole slide image). The presence of noise in the images 

during registration can affect the codes determination of registration accuracy (QC step), as this is determined 

through pixel-to-pixel cross correlation. So first, create logical images indicating locations containing tissue with 

the function calculate_tissue_ws. This function has two methods of calculating the tissue space. First try with 

method 1: 

  calc_style=1; 

calculate_tissue_ws(pth1x, calc_style);  

This function will create logical images with the same filenames as the images in pth1x, saved in a subfolder 

named ‘TA’. Check that these tissue images look correct (are not white over background, nontissue space in the 

image, only white on tissue regions). If they do not look correct, delete the images inside the folder named ‘TA’ 

and try again, using method 2: 

calc_style=2; 

calculate_tissue_ws(pth1x, calc_style); 

 Sample H&E images with a corresponding ‘good’ TA image: 

 Next, apply the CODA nonlinear image registration to the low-resolution tif images. Note, this function can be 

applied without first creating the tissue masks with calculate_tissue_ws. The registration code will by default use 

method 1 to create the tissue masks. But it is best practice to first calculate the tissue masks and validate that they are 

accurate to ensure the best registration quality is achieved. 

calculate_image_registration(pth1x); 

This function will create output folders containing the globally registered images, the elastically registered 

images, and the registration transformation metadata: 

  pth1xG=[pth1x,'registered']; 

  pth1xE=[pth1x,'registered\elastic registration']; 

  pthdata=[pth1x,'registered\elastic registration\save_warps\'; 

Validate the image registration by loading the elastically aligned, downsampled z-stack in ImageJ. These 

validation images will be saved in a subfolder within the folder containing the low-resolution tif images: 



  pth_validate_regisration=[pth1x,'registered\elastic_registration\check']; 

Notes on debugging registration: If your results are bad and you would like to re-register with different parameters, first 

delete the ‘registered’ folder (inside pth1x) created by calculate_image_registration. If you do not delete this subfolder 

the registration code will skip all images that were previously registered.  

- If the elastically registered images are too jiggly, try reducing szE and/or diE inside calculate_image_registration 

- If the elastically registered images are too smeared, try increasing szE and/or diE inside 

calculate_image_registration 

- If the registration is taking too long for one image (>5 min), try reducing the resolution of the images, reduce the 

szE or diE inside calculate_image_registration and/or try a computer with higher RAM 

 

  



Section 4. Deep learning multi-labelling of tissue structures using training on manual annotations 

In this section, we describe steps to create a basic semantic segmentation algorithm using CODA. CODA uses a modified 

resnet50 network adapted for semantic segmentation using an implementation of DeepLab. Here, we describe how to 

generate training datasets of manual annotations for a set of images, how to format the data for deep learning, and how 

to train and apply a CODA deep learning model. 

1. First, choose the biological structures you wish to segment in your images. Semantic segmentation algorithms 

must classify every pixel of every image with a label, so your list must be exhaustive. For example, in lung 

histology you could choose to annotate: 

a. Bronchioles 

b. Alveoli 

c. Vasculature 

d. Metastases 

e. Nonexpanded lung 

f. Background 

g. Stroma 

Here, populations like fibroblasts and immune cells may be annotated inside of the ‘stroma’ layer. Background 

can encompass nontissue space as well as non-target noise within the histological images including red blood 

cells, shadows, and dust visible in the scanned images. 

2. Next, select some original resolution (.ndpi or .svs) images to annotate. Try first choosing 7 training images and 1 

testing image, then add images as necessary until your model performs acceptably (>90% quantitative accuracy + 

passes visual inspection) on an independent (not seen in training) testing image. Put images you wish to 

annotate in a separate folder named ‘pthannotations’: 

pthannotations=[pth,'annotations']; % put images here to annotate for training 

Inside of pthannotations, create a subfolder named pthim where you copy a corresponding high-resolution (here 

10x) tif image of each image that you are annotating. 

 pthim=[pthannotations,'10x']; % copy a tif image here for each training image 

Notes on the resolution you choose to train your model at: This choice highly depends on the resolution of 

structures you wish to label. If you want to quantify ‘bulk’ structures, low resolution (5x or lower) should be 

sufficient. If you want small structures such as small vasculature, small tubules, a medium resolution (~10x) 

should be sufficient. If you want to label individual cellular-sized strucutres, try ≥20x (you will need a computer 

with very high RAM and will have to very tediously annotate for this). 

3. Inside of pthannotations, copy one additional 20x (.ndpi or .svs) image to a subfolder named ‘pthtest,’ with a 

corresponding high-resolution tif image saved in ‘pthtestim’.  

  pthannotations_test=[pthannotations,'testing image']; % put image here to annotate for testing 

  pthtestim=[pthannotations_test,'10x']; % copy a tif image here for each testing image 

4. For each image you wish to annotate, open the file in Aperio ImageScope. To generate the xml files that will 

contain annotation data, select the Annotations button: 



 

This will open the Annotations window: 

 

 

Generate annotation layers by pressing the plus button, and rename layers by hovering over the text that says 

‘Layer 1’, and clicking left, then right, then left on the mouse in quick succession (I don’t know why this works). 

 

 

Make all layers for all structures you want to annotate in your sample. It is VERY IMPORTANT that all layers exist 

in the exact same order in all training and testing images you annotate. Create a layer even for structures that 

are not present in all images you annotate. If a layer is present in one image, it must be present in all images. 

 



 

5. Next, create your annotations by selecting the pen tool in the ImageScope taskbar. Aim for ~25 annotations of 

each structure on each image. This is not always possible for rare structures.  

 

 

Notes on annotating: 

o The quality of your segmentation model depends on the quality of your annotations. Zoom-in to high 

magnification to annotate, and try to annotate very cleanly along the edges of structures. 

o Try to make all of annotations roughly the same size (do not make huge background annotations and tiny 

tissue annotations). 

o If your annotations are overlapping, they must follow consistent ‘laws.’ One annotation layer must 

always dominate the other layer, so that MATLAB understands how to interpret overlapping masks. 

Consider creating a list of ‘nesting order’ before you begin annotating to organize which annotations are 

the ‘bottom layer’ up to the ‘top layer.’ For example, to annotate bronchiole inside of alveoli in lung 

histology, the alveolar annotation (yellow) will encircle the bronchiole annotation (green). A background 

annotation (blue) will circle noise inside the bronchiole. Here, the background layer is ‘dominant’ over 

the bronchiole layer, and the bronchiole layer is ‘dominant’ over the alveolar layer, in cases of overlap.  

 

6. When you’ve finished making annotations, you are ready to set up your MATLAB training function. This package 

requires several variable definitions that are listed inside the top section of the function 

‘train_image_segmentation.’  For the sample lung dataset, this function is filled out and saved as 

train_image_segmentation_lung. To create the inputs for this function you will need: 

The subfolder containing ‘.xml’ files with your training annotation information (created by ImageScope) 



pthannotations=[pth,'annotations']; % put images here to annotate for training 

 The subfolder containing ‘.xml’ files with your testing annotation information (created by ImageScope) 

  pthannotations_test=[pthannotations,'testing image']; % put image here to annotate for testing 

 The subfolder containing high-resolution tif images corresponding to each annotated training image 

 pthim=[pthannotations,'10x']; % copy a tif image here for each training image 

 The subfolder containing high-resolution tif images corresponding to each annotated testing image 

  pthtestim=[pthannotations_test,'10x']; % copy a tif image here for each testing image 

The subfolder containing the full dataset of high-resolution tif images that you want to classify with your model 

after training is finished 

  pthclassify=[pth,'10x']; 

The downsample factor of your high-resolution tif images compared to the images you annotated in ImageScope 

(this is the same number you gave as input to the function create_downsampled_tif_images to create your high-

resolution tif images). 

 umpix=2; 

The date that your model was trained. This will define the output folder name where the trained model will be 

saved, such that unique folders are generated for different iterations of models made. 

 nm='12_15_2023'; 

The size (in pixels) of the tiles you want to create for model training. By default this is set at 700, resulting in 

creation of 700 x 700 x 3 sized RGB tiles. Depending on your GPU memory, you may be able to increase this 

(model performance will be better for larger tiles) or you may need to decrease this. 

 sxy=700; 

The number of large training images you want to create. Each of these large images will be chopped into ~100 

training tiles. A good number is around 15 but go lower or higher if you have very few (~5 images) or very many 

(>20 images) annotations. 

 ntrain=15; 

7. The variable ‘WS’ is the most complicated to create, as it requires you to think critically about the annotation 

layers you created. Inside of this variable, you will define how to order your layers, whether to combine layers, 

and whether to keep or remove whitespace from your layers. For simplicity, WS is split into four components: 

a. annotation_whitespace is a matrix of size [1 N] where N is the number of annotation layers you created 

in ImageScope. For each position within annotation_whitespace, indicate with 0 if you wish to remove 

the whitespace from your annotation (for example if you annotated a blood vessel and with to remove 

the luminal space from your annotation), indicate with 1 if you wish to keep only the whitespace in your 

annotation (for example if you annotated fat and wish to remove the nonwhite lines dividing separate fat 

cells from your annotation), and indicate with 2 if you wish to keep both whitespace and nonwhite space 

within your annotation. 

For example, for the four classes: 

1. Bronchioles (remove whitespace [contains lumen]) 

2. Alveoli (remove whitespace [keep only the webbing]) 



3. Vasculature (remove whitespace [lumen of vasculature]) 

4. Metastases (remove whitespace [whitespace around the edges of the cancer cells]) 

5. Nonexpanded lung (remove whitespace [keep only the webbing]) 

6. Background (keep both [this class contains whitespace + noise like shadows]) 

7. Stroma (remove whitespace [keep only the thin collagen fibers]) 

annotation_whitespace=[0 0 0 0 0 2 0]; 

b. add_whitespace_to is a matrix of size [1 2]. The first number defines the annotation layer to add 

whitespace to when it was removed from another class (where annotation_whitespace = 0) – this is 

usually the background class. The second number defines the annotation layer to add nonwhitespace to 

when it is removed from another class (where annotation_whitespace=1) – this is usually the stroma 

class. For example, for the four classes listed above, add whitespace to class 6 (background), and add 

nonwhitespace to class 6 (also background as this is not applicable to this model). 

add_whitespace_to=[6 6]; 

c. nesting_order is a matrix of size [1 N] where N is the number of annotation layers you created in 

ImageScope. This variable allows you to define how overlapping annotations should be processed. 

Numbers on the left side of this variable are ‘below’ annotations listed to the right of them. For example, 

in the example above, we annotated a bronchiole inside of an alveolar annotation. This means 

bronchioles must be ‘above’ alveoli in the nesting order. Let’s assume that stroma is the ‘bottom layer,’ 

followed by alveoli, nonexpanded tissue, cancer, vasculature, bronchioles, and background. 

nesting_order=[7 2 5 4 3 1 6]; % stroma, alveoli, nonexpanded, cancer, vessels, bronch., backgrd 

In contrast, if none of your annotations overlap, nesting_order can be sequential: 

nesting_order=[1 2 3 4 5]; % no particular nesting order 

d. combine_classes is a matrix of size [1 N] where N is the number of annotation layers you created in 

ImageScope. This variable allows you to re-order or combine multiple classes. For example, if you 

originally annotate the seven classes listed above but decide to combine the alveoli and nonexpanded 

tissue classes your variable would look like: 

combine_classes=[1 2 3 4 2 5 6]; 

You now will create a deep learning model that has only 6 classes. 

 These four defined variables will be combined into the variable ‘WS’ in MATLAB. 

8. Finally, create variables defining the names and RGB colors for the final tissue structures in your model. In our 

sample model, we have four classes (after we combined the classes fat and background using the 

combine_classes variable). For this we define classNames and cmap. 

ClassNames is a string variable containing the names of each class. Note this variable cannot contain spaces in 

names, use underscore instead (“blood_vessels” instead of “blood vessels”). 

classNames=["bronchioles" "alveoli" "vasculature","cancer","nonexpanded","whitespace","stroma"]; 

cmap is a matrix of size [N 3] for N final classes in your deep learning model. Each row of this matrix defines the 

RGB color of one class of your deep learning model in 8-bit space. For example: 

cmap=[150 099 023;...     % 1  bronchioles  (brown) 



      023 080 150;...     % 2  alveoli      (dark blue) 

      150 031 023;...     % 3  vasculature  (dark red) 

      199 196 147;...     % 4  cancer       (v dark purple) 

      023 080 150;...     % 5  nonexpanded  (dark blue) 

      255 255 255;...     % 6  whitespace   (white) 

      242 167 227];...    % 7  collagen    (light pink) 

With these inputs, you are ready to train your model. If you call the function train_image_segmentation, this will train a 

deep learning model (saved in a folder inside pthannotations), test that model using the annotations inside 

pthannotations_test and will classify the images in the folder pthclassify.  

If you do not receive satisfactory results, add additional annotations (either entirely new training images or additional 

annotations on the same training images) until satisfactory results are achieved. 

The workflow in this section will create a subfolder inside pthannotations containing the trained deep learning model 

and training tiles. These tiles can take up large amounts of disk space, so delete them (but keep your model inside the 

folder ‘net.mat’).  

  pthmodel=[pthannotations,nm]; 

This workflow will also create a subfolder inside the high-resolution tif image path named [‘classification_’,nm], where 

nm is the date of the deep learning model training. Inside this subfolder will be the segmented, high-resolution tif 

images.  

  pthclassified=[pth10x,'classification_',nm]; 

Inside of this subfolder will be a second folder named ‘check_classification,’ containing color labelled versions of the 

classified files. These colorized classified images are handy for visualization of the results and qualitative validation of 

model performance across the dataset.  

pthcheckclassification=[pth10x,'classification_',nm,'check_classification']; 

 

  



Section 5. Register the deep learning labelled images 

Using the registration transformations calculated in low-resolution (as described in Section 3), register the segmentation 

masks of the high-resolution tif images generated in Section 4.  

1. The function requires the path containing the classified, high-resolution images from Section 4 (pthclassified), 

the path containing the image registration information from Section 3 (pthdata), the scale between the high-

resolution classified images and the low-resolution registration images (here for registration of 1x images and 

classification of 10x images, scale=10), and the pixel number of the background class in the segmentation model 

built in Section 4 (here, nwhite=3). 

  pthim=pthclassified; 

  pthdata=[pth,'1x\registered\elastic registration\save_warps']; 

  scale=10; 

  padnum=3; 

apply_image_registration(pthim,pthdata,scale,padnum); 

This function will create an subfolder named ‘registeredE’ inside the pthclassified folder that contains the 

registered, classified images.  

  pthclassifiedE=[pthclassified,'registeredE']; 

   

  



Section 6. Construct 3D tissue matrix 

Next, we will create a 3D quantifiable matrix from the tissue labels using the registered, segmented images created in 

Section 5. vol will be a 3D matrix containing the registered, labelled data. To call this function, you need to locate the 

subfolder containing the registered classified images output in Section 5, define a location to save the output matrix, 

define the desired resolution of the volume matrix (relative to the current resolution of the images, and identify the RGB 

color map used in the deep learning model in Section 4. 

pthclassifiedE is the subfolder with the registered, classified images created in Section 5: 

pthclassifiedE=[pthclassified,'registeredE']; 

 Define a subfolder where you would like to save the volumetric data: 

pthvolume=[pth,'lung_data']; 

set sk to 4 so that 10x image (1 um / pixel resolution) are downsampled to 4 micron / pixel: 

sk=4; 

nwhite is the background class from the deep learning model. Here, let’s use 6: 

nwhite=6;  

cmap is the matrix containing RGB triplets for each class in the deep learning model, defined in Section 4. 

cmap=[]; 

build_tissue_volume(pthclassifiedE,pthvolume,sk,nwhite,cmap); 

First, the function will display to you a concatenated image containing the first, center, and last classified image in your 

image stack. Here, you will manually drag a rectangle to surround the tissue in the image, then double-click. This allows 

you to crop out excess whitespace from your 3D matrix to save RAM. 

Sample concatenated image of the first, center, and last image with manually selected rectangle to crop out 

excess space: 

  

Next, the function will load all serial images, crop them, downsample them using the variable sk, and build them into the 

matrix vol. A z-projection will be created and displayed showing a combination of all non-background classes. This z-

projection will be saved inside the folder pthvolume.   

Additionally, this function will create a .mat file named volume.mat saved inside the subfolder pthvolume. Inside this file 

will be a variable named vol containing the volumetric tissue labels, rr containing the cropping information defined 



inside the function, pthclassifiedE the folder containing the registered classified images used to create the volume, imlist 

containing the filenames of the images comprising the 3D matrix, and sk the downsample factor between the images in 

imlist and the data in vol. 

 Sample z-projection of all non-background tissue with default contrast: 

 contrast=[1 1 1 1 1 1 1]; 

  

 Sample z-projection of all non-background tissue with contrast to emphasize bronchioles and vasculature: 

 contrast=[3 0.8 2 1 0.8 1 1] 

  

Note: When determining what resolution to make your volumetric matrix, there are a few considerations: 

- You may want to make your 3D matrix isometric (same resolution in x, y, and z) to simplify 3D quantifications. In 

this case, define sk such that your classified images will be downsampled to the spacing between adjacent 

histological images 

- You may want to consider the size of structures you are trying to quantify. If you need to maintain classification 

of very fine structures (such as thin blood vessels), down sampling too much may eliminate the connectivity 

between these thin objects. 

 

  



Section 7. Nuclear coordinate generation 

In this section, generate nuclear coordinates on the high-resolution H&E images through color deconvolution and 

identification of two-dimensional intensity minimums in the hematoxylin channels of the images (corresponding to the 

dark blue nuclei). This calculation is done on the high-resolution tif images saved inside pth10x.  

Note on cell detection: It is important that the cell coordinates are generated on unregistered images, as warping caused 

by the registration process can cause inaccuracies in nuclear detection performed on the registered images. Instead, 

detect coordinates on the unregistered images, then apply the registration transformations to the cell coordinates to 

determine their positions in registered space. 

1. First, generate a mosaic image containing tiles from nine randomly chosen high-resolution images. This will be 

the image used to optimize the parameters for the cell detection algorithm. Given the path to the high-

resolution images, the function will randomly choose nine files (filenames can overlap if the folder contains 

fewer than nine files). The low-resolution version of each image will be loaded and displayed to the user, 

prompting the user to click on a region containing tissue. This will be repeated nine times, after which the high-

resolution mosaic image will be generated.  

Note: When manually selecting regions for the mosaic image, select regions with various morphologies to ensure 

that your cell detection algorithm is robust. 

  make_cell_detection_mosaic(pth10x); 

 This will create a subfolder containing the mosaic image: 

  pthmosaic=[pth10x,'cell_detection_validation']; 

 Sample mosaic image: 

   

2. Manually count the nuclei on the mosaic image to generate ground-truth coordinates. Given the path to the 

mosaic image, this function will display the image to the user and prompt the user to zoom in. Zoom to a region 

where nuclei are clear, then press ‘spacebar.’ Click on each nucleus in the zoomed region, then press ‘z’ to zoom 

or scroll to another region in the image. Continue until all nuclei in the mosaic have been annotated. At any time, 

exit the code by pressing ‘z’ and selecting continue later. When you recall the code it will automatically continue 

from where you left off. When you are finished, press ‘z’ then select ‘Quit’.  

For a mosaic image comprised of 9 200x 200 micron2 10x magnification tiles, manual annotation of nuclei for a 

medium dense tissue should take 30 – 45 minutes for a trained user.  

  manual_cell_count(pthmosaic);  

This will create a subfolder named ‘manual detection’ containing the manually identified coordinates inside a 

mat file in a variable named ‘xym.’ 

  pth_mosaic_manul_coords=[pthmosaic, manual detection’]; 



 Sample mosaic image with manual nuclear coordinates overlaid: 

    

3. Next, determine the optimal intensity cutoff and minimum spacing between nuclei to most maximize the true 

positives and minimize the false positives and false negatives in automatic determination of nuclear coordinates. 

This is done through comparison of the manually generated cell coordinates to several variations of 

automatically generated coordinates. 

First, deconvolve the mosaic image to get its hematoxylin channel. If the images are H&E, use the ImageJ default 

optical densities for H&E images: 

This function generates output images containing the hematoxylin and eosin (or DAB) channel images: 

  pthmosaicH=[pth10x,'Hchannel']; 

  pthmosaicE=[pth10x,'Echannel']; 

4. Next, optimize the parameters by iteratively generating nuclear coordinates on the mosaic image and comparing 

them to the manual cell detection. 

  get_nuclear_detection_parameters(pthmosaic) 

This will generate a subfolder named ‘automatic detection’ containing the optimal automatically generated cell 

coordinates, and a subfolder named ‘optimization params’ containing the determined parameters. 

  paramsfile=[pthmosaic,'automatic_detection\optimized_params.mat']; 

Now, apply the color deconvolution to the entire high-resolution dataset using the calculated parameters. We 

first deconvolve the images to get their hematoxylin channel. If the images are H&E, use the ImageJ default 

optical densities for H&E images: 

stain_type=1;  

If the images are IHC, use the ImageJ default optical densities for H DAB images: 

stain_type=2; 

  deconvolve_histological_images(pth10x,stain_type); 

This function generates output images containing the hematoxylin and eosin (or DAB, for IHC) channel images: 

  pthH=[pth10x,'Hchannel']; 

  pthE=[pth10x,'Echannel']; 

5. Finally, apply the cell detection to the hematoxylin channel of the high-resolution images using the optimized 

parameters: 



  pthparams=[pth10x,'cell_detection_validation\automatic_detection']; 

  cell_detection(pthH,pthparams); 

The workflow in this section will create a subfolder inside the high-resolution hematoxylin-channel tif image 

folder named ‘cell_counts’. Within ‘cell_counts’ will be a mat file corresponding to each tif image. Inside each 

mat file will be a variable named ‘xy’ with coordinates for each cell found in the corresponding image. 

  pthcoords=[pth10x,'cell_counts\']; 

 

  



Section 8. Register the nuclear coordinates 

Using the registration transformations calculated in low-resolution (as described in Section 3), register the nuclear 

coordinates generated in Section 6.  

1. As input, this function needs the path to the low-resolution images that were registered in Section 3 (pth1x), the 

path containing the coordinates calculated in Section 5 (pthcoords), and the scale factor between these images. 

For cell detection performed in 10x and registration calculated in 1x,  

scale=10; 

  register_cell_coordinates(pth1x,pthcoords,scale); 

 Sample well registered cell coordinates overlap with unregistered, global, and elastically registered H&E: 

  

*if the yellow dots do not line up over the tissue, there is a problem in your code. 

This function will create a subfolder inside pthcoords named ‘cell_coordinates_registered.’ Inside that subfolder 

will be a mat file corresponding to each tif image. Inside each mat file will be a variable named ‘xy’ (unregistered 

cell coordinates), ‘xyg’ (globally registered cell coordinates), and ‘xye’ (elastically registered cell coordinates), all 

saved at the same low-resolution as the original registration images used in Section 3. 

  pthcoordsE=[pthcoords,'cell_coordinates_registered']; 

  



Section 9. Construct 3D cell matrix 

Next, create volcell, a matrix containing the nuclear labels in a volumetric matrix the same size and resolution of the 

tissue matrix constructed in Section 6. To call this function, you need to define the folder containing the registered, 

classified images created in Section 5, the folder containing the registered cell coordinates created in Section 8, the 

folder containing the tissue matrix created in Section 6, and the scale between the high-resolution, classified images and 

the high-resolution images used for cell detection (this is probably 1). 

1. First, define the folders containing the registered, classified images, the registered nuclear coordinates, and the 

tissue volume matrix: 

pthclassifiedE=[pthclassified,'registeredE']; 

  pthcoordsE=[pthcoords,'cell_coordinates_registered']; 

pthvolume=[pth,'lung_data']; 

2. Next, define the scale between the high-resolution images used for tissue classification in Section 4 and the high-

resolution images used for cell detection in Section 7. If the classification and cell detection were applied to the 

same resolution images (this is likely), the scale is 1.  

scale=1; 

Finally, nwhite is the whitespace class from the deep learning model. Here, let’s again use nwhite=6 (the 

background class number from the sample lung model. 

 nwhite=6; 

3. Now, call the make_volcell function: 

  build_cell_volume(pthclassifiedE,pthcoordsE,pthvolume,scale,nwhite) 

This function will create a 3D matrix containing nuclear coordinates. The matrix will be at the same resolution as 

the tissue volume matrix, and automatically crop out the same background space that was manually selected for 

removal in Section 6. To validate that the function creates a variable volcell that is the same resolution and crop 

as the tissue matrix vol, the function will display two images. First, the function will display an overlay of the 

center image from vol and volcell. Second, the function will display an overlay of the z-projections of vol and 

volcell. If either of these images do not appear overlayed (you see two separate, unaligned tissues), there was a 

problem with the construction of either vol or volcell. 

Sample z-projection showing successful overlay of the center image of 3D tissue matrix and 3D cell matrix to validate 

your two variables (if you see two, unaligned structures, something is wrong): 

 



Sample z-projection showing successful overlay of 3D tissue matrix and 3D cell matrix to validate your two variables 

(if you see two, unaligned structures, something is wrong): 

 

  



Section 10: Notes on visualization 

Beyond the scope of this guide, consider volshow or patch 

 

  



Section 11: Notes on quantification 

Primarily beyond the scope of this guide, as most spatial calculations must are custom to the biological question. Some 

basic considerations: 

To smooth your data. Your segmentation algorithm and 3D volumetric matrix will likely contain small false positive and 

false negative data. Try smoothing your volumetric data with the following. 

vol = volumetric matrix of size [m n z] containing 6 labels for 5 tissue structures plus background 

ws = 6; % background class for volumetric matrix 

to lightly smooth the tissue labels inside vol: 

 volS=vol; % create a smoothing variable 

 for b=1:max(vol(:)) 

  tmp=vol==b; 

  tmp=imclose(tmp,strel(‘sphere’,2)); % morphological closing to fill small holes 

  tmp=imopen(tmp,strel(‘sphere’,1)); % morphological opening to remove small noise 

  tmp=bwareaopen(tmp,500); % delete 3D objects that are fewer than 500 voxels; 

  volS(volS==b)=ws; 

  volS(tmp==1)=b; 

 end 

Note: be VERY CAUTIOUS using imopen to smooth thin structures (glands and vasculature), as imopen may eliminate 

“true positive” thin walls. Consider skipping imopen when you smooth 

To quantify volumes. volume of tissue class 2 (use vol or your smoothed volS): 

 sxy=4; % resolution of ‘vol’ matrix in xy in units of micron / pixel 

 sz=4; % distance between serial histological sections 

 volume_type_2=sum(vol(:)==2)*sx*sx*sz; % volume of type 2 in units of micron3 

 volume_type_2=volume_type_2/(10^9); % volume of type 2 in units of mm3 

To quantify cellularity.  number of cells in class 2 (use vol or your smoothed volS): 

 tmp=double(volcell).*double(vol==2); 

 cell_type_2=sum(tmp(:)); 

For more complex quantifications: 

Consider the functions bwdist, regionprops3, and custom functions you create.  

Happy Coding! 

 

  



Section 12: Shorthand for calling functions 

To downsample ndpi or svs images to 10x, 5x, and 1x tifs: 

 create_downsampled_tif_images or try Openslide in python 

 

To calculate registration on the low resolution (1x) images 

 Calculate the tissue area and background pixels: 

  calculate_tissue_ws 

 Calculate the registration transforms: 

  calculate_image_registration 

 

To build a 3D tissue volume using sematic segmentation: 

 First, generate manual annotations in Aperio imagescope 

Second, apply the deep learning function to train a model and segment the high resolution (5x or 10x) images: 

train_image_segmentation 

To apply the registration to segmented images: 

  apply_image_registration 

To build a 3D tissue matrix from registered, classified images: 

  build_tissue_volume 

 

To build a 3D cell volume containing nuclear coordinates: 

Build a mosaic image containing regions of many whole-slide images for cell detection optimization: 

  make_cell_detection_mosaic 

Manually annotate the mosaic image to get the ‘ground-truth’ number of cell nuclei: 

  manual_cell_count 

Determine cell detection parameters using the manual annotations on the mosaic image: 

  get_nuclear_detection_parameters 

Deconvolve the high-resolution (5x or 10x) H&E images before applying the cell detection algorithm: 

  deconvolve_histological_images 

Detect cells on the hematoxylin channel of the high-resolution images: 

  cell_detection 

Apply the registration to the cell coordinates: 

  register_cell_coordinates 

Build a 3D cell coordinate matrix corresponding to the 3D tissue matrix: 

  build_cell_volume 


